[1]

Hong L, Niu F, Lin Y, Wang S, Chen L, et al. 2021. MYB117 is a negative regulator of flowering time in Arabidopsis. Plant Signaling & Behavior 16:1901448

doi: 10.1080/15592324.2021.1901448
[2]

Song J, Li B, Cui Y, Zhuo C, Gu Y, et al. 2021. QTL mapping and diurnal transcriptome analysis identify candidate genes regulating Brassica napus flowering time. International Journal of Molecular Sciences 22:7559

doi: 10.3390/ijms22147559
[3]

Hassankhah A, Rahemi M, Ramshini H, Sarikhani S, Vahdati K. 2020. Flowering in Persian walnut: patterns of gene expression during flower development. BMC Plant Biology 20:136

doi: 10.1186/s12870-020-02372-w
[4]

Yao T, Park BS, Mao HZ, Seo JS, Ohama N, et al. 2019. Regulation of flowering time by SPL10/MED25 module in Arabidopsis. The New Phytologist 224:493−504

doi: 10.1111/nph.15954
[5]

Bouché F, Lobet G, Tocquin P, Périlleux C. 2016. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Research 44:D1167−D1171

doi: 10.1093/nar/gkv1054
[6]

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421

doi: 10.1186/1471-2105-10-421
[7]

Connor CW. 2019. Artificial intelligence and machine learning in anesthesiology. Anesthesiology 131:1346−59

doi: 10.1097/ALN.0000000000002694
[8]

Yuan Y, Cairns JE, Babu R, Gowda M, Makumbi D, et al. 2019. Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize. Frontiers in Plant Science 9:1919

doi: 10.3389/fpls.2018.01919
[9]

Wang X, Xuan H, Evers B, Shrestha S, Pless R, et al. 2019. High-throughput phenotyping with deep learning gives insight into the genetic architecture of flowering time in wheat. GigaScience 8:giz120

doi: 10.1093/gigascience/giz120
[10]

Mora-Poblete F, Maldonado C, Henrique L, Uhdre R, Scapim CA, et al. 2023. Multi-trait and multi-environment genomic prediction for flowering traits in maize: a deep learning approach. Frontiers in Plant Science 14:1153040

doi: 10.3389/fpls.2023.1153040
[11]

Satake A, Kawagoe T, Saburi Y, Chiba Y, Sakurai G, et al. 2013. Forecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genes. Nature Communications 4:2303

doi: 10.1038/ncomms3303
[12]

Meher PK, Mohapatra A, Satpathy S, Sharma A, Saini I, et al. 2021. PredCRG: a computational method for recognition of plant circadian genes by employing support vector machine with Laplace kernel. Plant Methods 17:46

doi: 10.1186/s13007-021-00744-3
[13]

Li Z, Tang W, You X, Hou X. 2022. LSAP: a machine learning method for leaf-senescence-associated genes prediction. Life 12:1095

doi: 10.3390/life12071095
[14]

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, et al. 2021. Pfam: the protein families database in 2021. Nucleic Acids Research 49:D412−D419

doi: 10.1093/nar/gkaa913
[15]

Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, et al. 2018. HMMER web server: 2018 update. Nucleic Acids Research 46:W200−W204

doi: 10.1093/nar/gky448
[16]

Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, et al. 2012. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Research 40:D1202−D1210

doi: 10.1093/nar/gkr1090
[17]

Huang Y, Niu B, Gao Y, Fu L, Li W. 2010. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680−82

doi: 10.1093/bioinformatics/btq003
[18]

Liu B, Liu F, Wang X, Chen J, Fang L, et al. 2015. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Research 43:W65−W71

doi: 10.1093/nar/gkv458
[19]

Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, et al. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research 40:D1178−D1186

doi: 10.1093/nar/gkr944
[20]

Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, et al. 2022. Database resources of the national center for biotechnology information. Nucleic Acids Research 50:D20−D26

doi: 10.1093/nar/gkab1112
[21]

Gupta P, Naithani S, Tello-Ruiz MK, Chougule K, D'Eustachio P, et al. 2016. Gramene database: navigating plant comparative genomics resources. Current Plant Biology 7−8:10−15

doi: 10.1016/j.cpb.2016.12.005
[22]

Yu J, Zhao M, Wang X, Tong C, Huang S, et al. 2013. Bolbase: a comprehensive genomics database for Brassica oleracea. BMC Genomics 14:664

doi: 10.1186/1471-2164-14-664
[23]

Li Z, Li Y, Liu T, Zhang C, Xiao D, et al. 2022. Non-heading Chinese cabbage database: an open-access platform for the genomics of Brassica campestris (syn. Brassica rapa) ssp. chinensis. Plants 11:1005

doi: 10.3390/plants11081005
[24]

Zheng Y, Wu S, Bai Y, Sun H, Jiao C, et al. 2019. Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops. Nucleic Acids Research 47:D1128−D1136

doi: 10.1093/nar/gky944
[25]

Brown AV, Conners SI, Huang W, Wilkey AP, Grant D, et al. 2021. A new decade and new data at SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Research 49:D1496−D1501

doi: 10.1093/nar/gkaa1107
[26]

Jayakodi M, Choi BS, Lee SC, Kim NH, Park JY, et al. 2018. Ginseng Genome Database: an open-access platform for genomics of Panax ginseng. BMC Plant Biology 18:62

doi: 10.1186/s12870-018-1282-9
[27]

Sakai H, Naito K, Takahashi Y, Sato T, Yamamoto T, et al. 2016. The Vigna genome server, 'Vig GS': a genomic knowledge base of the genus Vigna based on high-quality, annotated genome sequence of the azuki bean, Vigna angularis (Willd.) Ohwi & Ohashi. Plant & Cell Physiology 57:e2

doi: 10.1093/pcp/pcv189
[28]

Yu HJ, Baek S, Lee YJ, Cho A, Mun JH. 2019. The radish genome database (RadishGD): an integrated information resource for radish genomics. Database 2019:baz009

doi: 10.1093/database/baz009
[29]

Plomion C, Aury JM, Amselem J, Leroy T, Murat F, et al. 2018. Oak genome reveals facets of long lifespan. Nature Plants 4:440−52

doi: 10.1038/s41477-018-0172-3
[30]

Wei T, van Treuren R, Liu X, Zhang Z, Chen J, et al. 2021. Whole-genome resequencing of 445 Lactuca accessions reveals the domestication history of cultivated lettuce. Nature Genetics 53:752−60

doi: 10.1038/s41588-021-00831-0
[31]

Wang X, Wu J, Liang J, Cheng F, Wang X. 2015. Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources. Database 2015:bav093

doi: 10.1093/database/bav093
[32]

Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, et al. 2014. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950−53

doi: 10.1126/science.1253435
[33]

Byrne SL, Erthmann PØ, Agerbirk N, Bak S, Hauser TP, et al. 2017. The genome sequence of Barbarea vulgaris facilitates the study of ecological biochemistry. Scientific Reports 7:40728

doi: 10.1038/srep40728
[34]

Droc G, Larivière D, Guignon V, Yahiaoui N, This D, et al. 2013. The banana genome hub. Database 2013:bat035

doi: 10.1093/database/bat035
[35]

Poza-Viejo L, Payá-Milans M, San Martín-Uriz P, Castro-Labrador L, Lara-Astiaso D, et al. 2022. Conserved and distinct roles of H3K27me3 demethylases regulating flowering time in Brassica rapa. Plant, Cell & Environment 45:1428−41

doi: 10.1111/pce.14258
[36]

Qu G, Gao Y, Wang X, Fu W, Sun Y, et al. 2022. Fine mapping and analysis of candidate genes for qFT7.1, a major quantitative trait locus controlling flowering time in Brassica rapa L. Theoretical and Applied Genetics 135:2233−46

doi: 10.1007/s00122-022-04108-w
[37]

Jung H, Lee A, Jo SH, Park HJ, Jung WY, et al. 2021. Nitrogen signaling genes and SOC1 determine the flowering time in a reciprocal negative feedback loop in Chinese cabbage (Brassica rapa L.) based on CRISPR/Cas9-mediated mutagenesis of multiple BrSOC1 homologs. International Journal of Molecular Sciences 22:4631

doi: 10.3390/ijms22094631
[38]

Zhang C, Zhou Q, Liu W, Wu X, Li Z, et al. 2022. BrABF3 promotes flowering through the direct activation of CONSTANS transcription in pak choi. The Plant Journal:for Cell and Molecular Biology 111:134−48

doi: 10.1111/tpj.15783
[39]

Teng Z, Zheng W, Yu Y, Hong SB, Zhu Z, et al. 2021. Effects of BrMYC2/3/4 on plant development, glucosinolate metabolism, and Sclerotinia sclerotiorum resistance in transgenic Arabidopsis thaliana. Frontiers in Plant Science 12:707054

doi: 10.3389/fpls.2021.707054
[40]

Wang Y, Song S, Hao Y, Chen C, Ou X, et al. 2023. Role of BraRGL1 in regulation of Brassica rapa bolting and flowering. Horticulture Research 10:uhad119

doi: 10.1093/hr/uhad119
[41]

Lee A, Jung H, Park HJ, Jo SH, Jung M, et al. 2023. Their C-termini divide Brassica rapa FT-like proteins into FD-interacting and FD-independent proteins that have different effects on the floral transition. Frontiers in Plant Science 13:1091563

doi: 10.3389/fpls.2022.1091563
[42]

Si S, Zhang M, Hu Y, Wu C, Yang Y, et al. 2021. BrcuHAC1 is a histone acetyltransferase that affects bolting development in Chinese flowering cabbage. Journal of Genetics 100:56

doi: 10.1007/s12041-021-01303-4
[43]

Wei Q, Hu T, Xu X, Tian Z, Bao C, et al. 2022. The new variation in the promoter region of FLOWERING LOCUS T is involved in flowering in Brassica rapa. Genes 13:1162

doi: 10.3390/genes13071162