[1] |
Cherian S, Ryu SB, Cornish K. 2019. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Plant Biotechnology Journal 17:2041−61 doi: 10.1111/pbi.13181 |
[2] |
Cornish K. 2001. Biochemistry of natural rubber, a vital raw material, emphasizing biosynthetic rate, molecular weight and compartmentalization, in evolutionarily divergent plant species. Natural Product Reports 18:182−89 doi: 10.1039/a902191d |
[3] |
Salehi M, Cornish K, Bahmankar M, Naghavi MR. 2021. Natural rubber-producing sources, systems, and perspectives for breeding and biotechnology studies of Taraxacum kok-saghyz. Industrial Crops and Products 170:113667 doi: 10.1016/j.indcrop.2021.113667 |
[4] |
van Beilen JB, Poirier Y. 2007. Establishment of new crops for the production of natural rubber. Trends in Biotechnology 25:522−29 doi: 10.1016/j.tibtech.2007.08.009 |
[5] |
Metcalfe CR. 1967. Distribution of latex in the plant kingdom. Economic Botany 21:115−27 doi: 10.1007/BF02897859 |
[6] |
Yang N, Yang D, Yu X, Xu C. 2023. Multi-omics-driven development of alternative crops for natural rubber production. Journal of Integrative Agriculture 22:959−71 doi: 10.1016/j.jia.2023.03.007 |
[7] |
d'Auzac J, Jacob JL, Chrestin HE. 1989. Physiology of Rubber Tree Latex. Boca Raton: CRC Press. pp. 345−82. |
[8] |
Jacob JL, Eschbach JM, Prévot JL, Roussel D, Lacrotte R, et al. 1985. Physiological basis for latex diagnosis of the functioning of the laticiferous system in rubber trees. International Rubber Conference, Kuala Lumpur, Malaisia, 1985. pp. 43−68. https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers20-05/010028013.pdf |
[9] |
Eschbach JM, Roussel D, Sype HVD, Jacob JL, D'auzac J. 1984. Relationship between yield and clonal physiological characteristics of latex from Hevea brasiliensis. Physiologie végétale 22:295−304 |
[10] |
Chantuma P, Lacote R, Leconte A, Gohet E. 2011. An innovative tapping system, the double cut alternative, to improve the yield of Hevea brasiliensis in Thai rubber plantations. Field Crops Research 121:416−22 doi: 10.1016/j.fcr.2011.01.013 |
[11] |
Phearun P, Chetha P, Bunthuon H, Lacote R, Chhek C, et al. 2016. Early clonal selection of Hevea brasiliensis based on latex physiological parameters in Cambodia. International Rubber Conference, Siem Reap, Cambodge, 2016. pp. 286−97. https://agritrop.cirad.fr/582388/ |
[12] |
Gohet E, Cauchy T, Soumahoro M, Kotochi C, Chegbene P, et al. 2019. Meta-analysis of a large industrial latex diagnosis database provides insight on Hevea brasiliensis clonal adaptation and site-specific yield potential in Western Africa. International Rubber Conference, Nay Pyi Taw, Myanmar, 2019. pp. 1−19. https://agritrop.cirad.fr/593887/1/Gohet%20et%20al.%202019.pdf |
[13] |
Junaidi J, Clément-Vidal A, Nuringtyas TR, Gohet E, Subandiyah S, Montoro P. 2022. A meta-analysis of latex physiology studies reveals limited adoption and difficulties to interpret some latex diagnosis parameters in Hevea brasiliensis. HAYATI Journal of Biosciences 30:358−71 doi: 10.4308/hjb.30.2.358-371 |
[14] |
She F, Zhu D, Kong L, Wang J, An F, et al. 2013. Ultrasound-assisted tapping of latex from Para rubber tree Hevea brasiliensis. Industrial Crops and Products 50:803−8 doi: 10.1016/j.indcrop.2013.08.065 |
[15] |
Sainoi T, Sdoodee S, Lacote R, Gohet E, Chantuma P. 2017. Stimulation affecting latex physiology and yield under low frequency tapping of rubber (Hevea brasiliensis) clone RRIM 600 in southern Thailand. Australian Journal of Crop Science 11:220−27 doi: 10.21475/ajcs.17.11.02.p305 |
[16] |
Tistama R, Siregar P, Ade-Fipriani L, Junaidi J. 2019. Physiological status of high and low metabolism Hevea clones in the difference stage of tapping panel dryness. Biodiversitas 20:267−73 doi: 10.13057/biodiv/d200143 |
[17] |
Cardoso SEA, Freitas TA, Silva DdC, Gouvêa LRL, Gonçalves PdS, et al. 2014. Comparison of growth, yield and related traits of resistant Hevea genotypes under high South American leaf blight pressure. Industrial Crops and Products 53:337−49 doi: 10.1016/j.indcrop.2013.12.033 |
[18] |
Le Guen V, Garcia D, Doaré F, Mattos CRR, Condina V, et al. 2011. A rubber tree's durable resistance to Microcyclus ulei is conferred by a qualitative gene and a major quantitative resistance factor. Tree Genetics & Genomes 7:877−89 doi: 10.1007/s11295-011-0381-7 |
[19] |
Souza LM, Gazaffi R, Mantello CC, Silva CC, Garcia D, et al. 2013. QTL mapping of growth-related traits in a full-sib family of rubber tree (Hevea brasiliensis) evaluated in a sub-tropical climate. PLoS ONE 8:e61238 doi: 10.1371/journal.pone.0061238 |
[20] |
An Z, Zhao Y, Zhang X, Huang X, Hu Y, et al. 2019. A high-density genetic map and QTL mapping on growth and latex yield-related traits in Hevea brasiliensis Müll. Arg. Industrial Crops and Products 132:440−48 doi: 10.1016/j.indcrop.2019.03.002 |
[21] |
Francisco FR, Aono AH, Da Silva CC, Gonçalves PS, Scaloppi Junior EJ, et al. 2021. Unravelling rubber tree growth by integrating GWAS and biological network-based approaches. Frontiers in Plant Science 12:768589 doi: 10.3389/fpls.2021.768589 |
[22] |
Cheng H, Song X, Hu Y, Wu T, Yang Q, et al. 2023. Chromosome-level wild Hevea brasiliensis genome provides new tools for genomic-assisted breeding and valuable loci to elevate rubber yield. Plant Biotechnology Journal 21:1058−72 doi: 10.1111/pbi.14018 |
[23] |
Chao J, Wu S, Shi M, Xu X, Gao Q, et al. 2023. Genomic insight into domestication of rubber tree. Nature Communications 14:4651 doi: 10.1038/s41467-023-40304-y |
[24] |
Gouvêa LRL, Silva GAP, Verardi CK, de Oliveira ALB, Gonçalves ECP, et al. 2013. Rubber tree early selection for yield stability in time and among locations. Euphytica 191:365−73 doi: 10.1007/s10681-013-0874-6 |
[25] |
Taussky HH, Shorr E. 1953. A microcolorimetric method for the determination of inorganic phosphate. The Journal of biological chemistry 202:675−85 doi: 10.1016/S0021-9258(18)66180-0 |
[26] |
Hedge JE, Hofreiter BT. 1962. Carbohydrate Chemistry. New York: Academic Press |
[27] |
Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67:1−48 doi: 10.18637/jss.v067.i01 |
[28] |
Stewart Jr. C, Via LE. 1993. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. BioTechniques 14(5):748−50 |
[29] |
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−20 doi: 10.1093/bioinformatics/btu170 |
[30] |
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754−60 doi: 10.1093/bioinformatics/btp324 |
[31] |
Tang C, Yang M, Fang Y, Luo Y, Gao S, et al. 2016. The rubber tree genome reveals new insights into rubber production and species adaptation. Nature Plants 2:16073 doi: 10.1038/nplants.2016.73 |
[32] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078−79 doi: 10.1093/bioinformatics/btp352 |
[33] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20:1297−303 doi: 10.1101/gr.107524.110 |
[34] |
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, et al. 2011. The variant call format and VCFtools. Bioinformatics 27:2156−58 doi: 10.1093/bioinformatics/btr330 |
[35] |
Yin L, Zhang H, Tang Z, Xu J, Yin D, et al. 2021. rMVP: a memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide Association study. Genomics, Proteomics & Bioinformatics 19:619−28 doi: 10.1016/j.gpb.2020.10.007 |
[36] |
Zhou X, Stephens M. 2012. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics 44:821−24 doi: 10.1038/ng.2310 |
[37] |
Dong SS, He WM, Ji JJ, Zhang C, Guo Y, et al. 2021. LDBlockShow: a fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files. Briefings in Bioinformatics 22:bbaa227 doi: 10.1093/bib/bbaa227 |
[38] |
Anushka PVA, Withanage SP, Karunaratne NPSN, Kudaligama KVVS, Dahanayake TTD, et al. 2019. Assessment and selection based on girth and yield performance of new Hevea genotypes generated from controlled hybridization. Journal of the Rubber Research Institute of Sri Lanka 99:126−41 doi: 10.4038/jrrisl.v99i0.1895 |
[39] |
Putranto RA, Herlinawati E, Rio M, Leclercq J, Piyatrakul P, et al. 2015. Involvement of ethylene in the latex metabolism and tapping panel dryness of Hevea brasiliensis. International Journal of Molecular Sciences 16:17885−908 doi: 10.3390/ijms160817885 |
[40] |
Uffelmann E, Huang QQ, Munung NS, de Vries J, Okada Y, et al. 2021. Genome-wide association studies. Nature Reviews Methods Primers 1:59 doi: 10.1038/s43586-021-00056-9 |
[41] |
Bhusudsawang G, Rattanawong R, Phumichai T, Pootakham W, Tangphatsornruang S, et al. 2021. Identification of candidate gene-based markers for girth growth in rubber trees. Plants 10:1440 doi: 10.3390/plants10071440 |
[42] |
Castelblanque L, Balaguer B, Martí C, Rodríguez JJ, Orozco M, et al. 2016. Novel insights into the organization of laticifer cells: a cell comprising a unified whole system. Plant Physiology 172:1032−44 doi: 10.1104/pp.16.00954 |