[1]

Wu GA, Terol J, Ibanez V, López-García A, Pérez-Román E, et al. 2018. Genomics of the origin and evolution of Citrus. Nature 554:311−16

doi: 10.1038/nature25447
[2]

Xie R, Zheng L, Jiao Y, Huang X. 2021. Understanding physiological and molecular mechanisms of citrus rootstock seedlings in response to root zone hypoxia by RNA-Seq. Environmental and Experimental Botany 192:104647

doi: 10.1016/j.envexpbot.2021.104647
[3]

Balfagón D, Rambla JL, Granell A, Arbona V, Gómez-Cadenas A. 2022. Grafting improves tolerance to combined drought and heat stresses by modifying metabolism in citrus scion. Environmental and Experimental Botany 195:104793

doi: 10.1016/j.envexpbot.2022.104793
[4]

Primo-Capella A, Forner-Giner MÁ, Martínez-Cuenca M, Terol J. 2022. Comparative transcriptomic analyses of citrus cold-resistant vs. sensitive rootstocks might suggest a relevant role of ABA signaling in triggering cold scion adaption. BMC Plant Biology 22:209

doi: 10.1186/s12870-022-03578-w
[5]

Wu J, Cao J, Su M, Feng G, Xu Y, et al. 2019. Genome-wide comprehensive analysis of transcriptomes and small RNAs offers insights into the molecular mechanism of alkaline stress tolerance in a citrus rootstock. Horticulture Research 6:33

doi: 10.1038/s41438-018-0116-0
[6]

Fan Z, Wu Y, Zhao L, Fu L, Deng L, et al. 2022. MYB308-mediated transcriptional activation of plasma membrane H+ -ATPase 6 promotes iron uptake in citrus. Horticulture Research 9:uhac88

doi: 10.1093/hr/uhac088
[7]

Habibi F, Liu T, Folta K, Sarkhosh A. 2022. Physiological, biochemical, and molecular aspects of grafting in fruit trees. Horticulture Research 9:uhac32

doi: 10.1093/hr/uhac032
[8]

Yang L, Xia L, Zeng Y, Han Q, Zhang S. 2022. Grafting enhances plants drought resistance: current understanding, mechanisms, and future perspectives. Frontiers in Plant Science 13:1015317

doi: 10.3389/fpls.2022.1015317
[9]

Warschefsky EJ, Klein LL, Frank MH, Chitwood DH, Londo JP, et al. 2016. Rootstocks: Diversity, domestication, and impacts on shoot phenotypes. Trends in Plant Science 21:418−37

doi: 10.1016/j.tplants.2015.11.008
[10]

Raiol-Junior LL, de Carvalho EV, Moreira AS, Marques JPR, Stuchi ES, et al. 2022. Graft compatibility classification within Aurantioideae based on biometric traits and the anatomy of graft union. Agriculture 12:76

doi: 10.3390/agriculture12010076
[11]

Shimada T, Endo T, Fujii H, Nakano M, Sugiyama A, et al. 2018. MITE insertion-dependent expression of CitRKD1 with a RWP-RK domain regulates somatic embryogenesis in citrus nucellar tissues. BMC Plant Biology 18(1):166

doi: 10.1186/s12870-018-1369-3
[12]

Wang X, Xu Y, Zhang S, Cao L, Huang Y, et al. 2017. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nature Genetics 49:765−72

doi: 10.1038/ng.3839
[13]

Peng Z, Bredeson JV, Wu GA, Shu S, Rawat N, et al. 2020. A chromosome-scale reference genome of trifoliate orange (Poncirus trifoliata) provides insights into disease resistance, cold tolerance and genome evolution in Citrus. The Plant Journal 104:1215−32

doi: 10.1111/tpj.14993
[14]

He W, Xie R, Luo L, Chai J, Wang H, et al. 2022. Comparative transcriptomic analysis of inarching invigorating rootstock onto incompatible grafts in Citrus. International Journal of Molecular Sciences 23:14523

doi: 10.3390/ijms232314523
[15]

He W, Xie R, Wang Y, Chen Q, Wang H, et al. 2022. Comparative transcriptomic analysis on compatible/incompatible grafts in Citrus. Horticulture Research 9:uhab72

doi: 10.1093/hr/uhab072
[16]

He W, Wang Y, Chen Q, Sun B, Tang H, et al. 2018. Dissection of the mechanism for compatible and incompatible graft combinations of Citrus grandis (L.) Osbeck ('Hongmian Miyou'). International Journal of Molecular Sciences 19:505

doi: 10.3390/ijms19020505
[17]

Zhu S, Nong J, Luo G, Li Q, Wang F, et al. 2021. Varied tolerance and different responses of five citrus rootstocks to acid stress by principle component analysis and orthogonal analysis. Scientia Horticulturae 278:109853

doi: 10.1016/j.scienta.2020.109853
[18]

Balfagón D, Terán F, de Oliveira TDR, Santa-Catarina C, Gómez-Cadenas A. 2022. Citrus rootstocks modify scion antioxidant system under drought and heat stress combination. Plant Cell Reports 41:593−602

doi: 10.1007/s00299-021-02744-y
[19]

Zhu S, Chen J, Ma Y, Yan S, Zhong G. 2013. Advances in the studies on citrus rootstock evaluation and application. Acta Horticulturae Sinica 40:1669−78

[20]

Jiang J, Hou R, Yang N, Li L, Deng J, et al. 2021. Physiological and TMT-labeled proteomic analyses reveal important roles of sugar and secondary metabolism in Citrus junos under cold stress. Journal of Proteomics 237:104145

doi: 10.1016/j.jprot.2021.104145
[21]

Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences 14:9643−84

doi: 10.3390/ijms14059643
[22]

Dumanović J, Nepovimova E, Natić M, Kuča K, Jaćević V. 2021. The significance of reactive oxygen species and antioxidant defense system in plants: a concise overview. Frontiers in Plant Science 11:552969

doi: 10.3389/fpls.2020.552969
[23]

Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909−30

doi: 10.1016/j.plaphy.2010.08.016
[24]

Ozgur R, Uzilday B, Sekmen AH, Turkan I. 2013. Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology 40:832−47

doi: 10.1071/FP12389
[25]

Jiang M, Zhang J. 2002. Water stress - induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up - regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany 53:2401−10

doi: 10.1093/jxb/erf090
[26]

Xie R, He W, Chai J, Luo L, Wang Y, et al. 2022. A study of scion phenotypes in pummelo grafted onto a new citrus rootstock Citrus junos 'Pujiang Xiangcheng'. Horticulturae 8:1039

doi: 10.3390/horticulturae8111039
[27]

Fu X, Huang X, Chen T, Zhang J, Wang Y, et al. 2017. A new citrus rootstock 'Pujiang Xiangcheng' (Citrus junos). Journal of Fruit Science 34:917−20

doi: 10.13925/j.cnki.gsxb.20170069
[28]

Wellburn AR, Lichtenthaler H. 1984. Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents. In Advances in Photosynthesis Research. Advances in Agricultural Biotechnology, ed. Sybesma C, vol 2. Springer, Dordrecht. pp 9−12. https://doi.org/10.1007/978-94-017-6368-4_3

[29]

Shahid MA, Balal RM, Khan N, Simón-Grao S, Alfosea-Simón M, et al. 2019. Rootstocks influence the salt tolerance of Kinnow mandarin trees by altering the antioxidant defense system, osmolyte concentration, and toxic ion accumulation. Scientia Horticulturae 250:1−11

doi: 10.1016/j.scienta.2019.02.028
[30]

Landi M. 2017. Commentary to: "Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds" by Hodges et al., Planta (1999) 207:604–611. Planta 245:1067

doi: 10.1007/s00425-017-2699-3
[31]

Zaher-Ara T, Boroomand N, Sadat-Hosseini M. 2016. Physiological and morphological response to drought stress in seedlings of ten citrus. Trees 30:985−93

doi: 10.1007/s00468-016-1372-y
[32]

Ko D, Helariutta Y. 2017. Shoot–root communication in flowering plants. Current Biology 27:R973−R978

doi: 10.1016/j.cub.2017.06.054
[33]

Dong D, Shi Y, Mou Z, Chen S, Zhao D. 2022. Grafting: a potential method to reveal the differential accumulation mechanism of secondary metabolites. Horticulture Research 9:uhac50

doi: 10.1093/hr/uhac050
[34]

Mahmoud LM, Huyck PJ, Vincent CI, Gmitter FG Jr, Grosser JW, et al. 2021. Physiological responses and gene expression patterns in open-pollinated seedlings of a pummelo-mandarin hybrid rootstock exposed to salt stress and Huanglongbing. Plants 10:1439

doi: 10.3390/plants10071439
[35]

Ziogas V, Tanou G, Filippou P, Diamantidis G, Vasilakakis M, et al. 2013. Nitrosative responses in citrus plants exposed to six abiotic stress conditions. Plant Physiology and Biochemistry 68:118−26

doi: 10.1016/j.plaphy.2013.04.004
[36]

Lawson T, Blatt MR. 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology 164:1556−70

doi: 10.1104/pp.114.237107
[37]

García-Caparrós P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, et al. 2021. Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. The Botanical Review 87:421−66

doi: 10.1007/s12229-020-09231-1
[38]

Yang C, Wang P, Li C, Shi D, Wang D. 2008. Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. Photosynthetica 46:107−14

doi: 10.1007/s11099-008-0018-8
[39]

Pietrini F, Chaudhuri D, Thapliyal AP, Massacci A. 2005. Analysis of chlorophyll fluorescence transients in mandarin leaves during a photo-oxidative cold shock and recovery. Agriculture, Ecosystems & Environment 106:189−98

doi: 10.1016/j.agee.2004.10.007
[40]

Khan M, Hu J, Dahro B, Ming R, Zhang Y, et al. 2021. ERF108 from Poncirus trifoliata (L.) Raf. functions in cold tolerance by modulating raffinose synthesis through transcriptional regulation of PtrRafS. The Plant Journal 108:705−24

doi: 10.1111/tpj.15465
[41]

Zhang Y, Ming R, Khan M, Wang Y, Dahro B, et al. 2022. ERF9 of Poncirus trifoliata (L.) Raf. undergoes feedback regulation by ethylene and modulates cold tolerance via regulating a glutathione S-transferase U17 gene. Plant Biotechnology Journal 20:183−200

[42]

Geng J, Wei T, Wang Y, Huang X, Liu J, et al. 2019. Overexpression of PtrbHLH, a basic helix-loop-helix transcription factor from Poncirus trifoliata, confers enhanced cold tolerance in pummelo (Citrus grandis) by modulation of H2O2 level via regulating a CAT gene. Tree Physiology 39:2045−54

doi: 10.1093/treephys/tpz081
[43]

Arbona V, Hossain Z, López-Climent MF, Pérez-Clemente RM, Gómez-Cadenas A. 2008. Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiologia Plantarum 132:452−66

doi: 10.1111/j.1399-3054.2007.01029.x
[44]

De Carvalho DU, Leite RP Junior, Yada IFU, Tazima ZH. 2022. Trifoliate orange-related rootstocks enhance the horticultural performance of 'Shamouti' sweet orange under humid subtropical condition. Agriculture 12:1782

doi: 10.3390/agriculture12111782
[45]

Zhu S, Huang T, Yu X, Hong Q, Xiang J, et al. 2020. The effects of rootstocks on performances of three late-ripening navel orange varieties. Journal of Integrative Agriculture 19:1802−12

doi: 10.1016/S2095-3119(20)63212-9
[46]

Cantuarias-Avilés T, Mourão Filho FDAA, Stuchi ES, Da Silva SR, Espinoza-Nuñez E. 2011. Horticultural performance of 'Folha Murcha' sweet orange onto twelve rootstocks. Scientia Horticulturae 129:259−65

doi: 10.1016/j.scienta.2011.03.039