[1]

Tartachnyk I, Kuckenberg J, Yuri JA, Noga G. 2012. Identifying fruit characteristics for non-invasive detection of sunburn in apple. Scientia Horticulturae 134:108−13

doi: 10.1016/j.scienta.2011.11.009
[2]

Feng Y, Li S, Jia R, Yang J, Su Q, et al. 2022. Physiological characteristics of sunburn peel after apple debagged. Molecules 27:3775

doi: 10.3390/molecules27123775
[3]

Racsko J, Schrader LE. 2012. Sunburn of apple fruit: historical background, recent advances and future perspectives. Critical Reviews in Plant Sciences 31:455−504

doi: 10.1080/07352689.2012.696453
[4]

Daust D. 2013. Climate Change in BC. www2.gov.bc.ca/assets/gov/environment/natural-resource-stewardship/nrs-climate-change/applied-science/2a_va_bc-climate-change-final-aug30.pdf.

[5]

Xu H, Watanabe Y, Ediger D, Yang X, Iritani D. 2022. Characteristics of sunburn browning fruit and rootstock-dependent damage-free yield of Ambrosia apple after sustained summer heat events. Plants 11:1201

doi: 10.3390/plants11091201
[6]

Yuri JA, Neira A, Fuentes M, Sáez B, Razmilic I. 2019. A new sunburned apple category browning under conventional and organic management: phenolic compounds and antioxidant capacity in cold storage. Journal of Applied Botany and Food Quality 92:288−97

doi: 10.5073/JABFQ.2019.092.040
[7]

Hao YY, Huang WD. 2004. Changes in antioxidative system and cell ultrastructure in the fruit peels of apple during sunburn development. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Bao = Journal of Plant Physiology and Molecular Biology 30:19−26

[8]

Felicetti DA, Schrader LE. 2008. Changes in pigment concentrations associated with the degree of sunburn browning of 'Fuji' apple. Journal of American Society of Horticultural Science 133:27−34

doi: 10.21273/JASHS.133.1.27
[9]

Liu Y, Chen N, Zuo C, Wu Y, Che F, et al. 2019. The mechanism of color fading in sunburned apple peel. Acta Physiologiae Plantarum 41:2

doi: 10.1007/s11738-018-2785-6
[10]

Woolf AB, Ferguson IB. 2000. Postharvest responses to high fruit temperatures in the field. Postharvest Biology and Technology 21:7−20

doi: 10.1016/S0925-5214(00)00161-7
[11]

Felicetti DA, Schrader LE. 2010. Postharvest changes in pigment concentrations in 'Fuji' apples with 'Fuji' stain. Scientia Horticulturae 125:283−88

doi: 10.1016/j.scienta.2010.04.004
[12]

Peifer L, Ottnad S, Kunz A, Damerow L, Blanke M. 2018. Effect of non-chemical crop load regulation on apple fruit quality, assessed by the DA-meter. Scientia Horticulturae 233:526−31

doi: 10.1016/j.scienta.2017.11.011
[13]

Xu H, Blatt S, Ediger D. 2022. Tools for climate resilience in tree fruit I: large-dwarfing rootstocks can alleviate sunburn damage in "Buckeye Gala" apple. Canadian Journal of Plant Science 103:128

doi: 10.1139/cjps-2022-0080
[14]

Jung SK, Watkins CB. 2014. Internal ethylene concentrations in apple fruit at harvest affect persistence of inhibition of ethylene production after 1-methylcyclopropene treatment. Postharvest Biology and Technology 96:1−6

doi: 10.1016/j.postharvbio.2014.04.008
[15]

Velioglu YS, Mazza G, Gao L, Oomah BD. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry 46:4113−17

doi: 10.1021/jf9801973
[16]

Ross KA, Ehret D, Godfrey D, Fukumoto L, Diarra M. 2017. Characterization of pilot scale processed Canadian organic cranberry ( Vaccinium macrocarpon) and blueberry ( Vaccinium angustifolium) juice pressing residues and phenolic-enriched extractives. International Journal of Fruit Science 17:202−32

doi: 10.1080/15538362.2017.1285264
[17]

Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16:144−58

doi: 10.5344/ajev.1965.16.3.144
[18]

Harrison JE, Oomah BD, Diarra MS, Ibarra-Alvarado C. 2013. Bioactivities of pilot scale extracted cranberry juice and pomace. Journal of Food Processing and Preservation 37:356−65

doi: 10.1111/j.1745-4549.2011.00655.x
[19]

Gapper NE, McQuinn RP, Giovannoni JJ. 2013. Molecular and genetic regulation of fruit ripening. Plant Molecular Biology 82:575−91

doi: 10.1007/s11103-013-0050-3
[20]

Chen C, Zhang D, Wang Y, Li P, Ma F. 2012. Effects of fruit bagging on the contents of phenolic compounds in the peel and flesh of 'Golden Delicious', 'Red Delicious', and 'Royal Gala' apples. Scientia Horticulturae 142:68−73

doi: 10.1016/j.scienta.2012.05.001
[21]

Ross K, Neilsen G, Neilsen D. 2018. The effect of irrigation frequency, phosphorus fertigation, and cultivar on levels of phenolic compounds in sweet cherries. HortScience 53:1507−12

doi: 10.21273/HORTSCI13303-18
[22]

Yang B, Zheng J, Laaksonen O, Tahvonen R, Kallio H. 2013. Effects of latitude and weather conditions on phenolic compounds in currant ( Ribes spp.) cultivars. Journal of Agricultural Food Chemistry 61:3517−32

doi: 10.1021/jf4000456
[23]

Yan Y, Song C, Falginella L, Castellarin SD. 2020. Day temperature has a stronger effect than night temperature on anthocyanin and flavonol accumulation in 'Merlot' ( Vitis vinifera L.) grapes during ripening. Frontiers in Plant Science 11:1095

doi: 10.3389/fpls.2020.01095
[24]

Lin-Wang K, Micheletti D, Palmer J, Volz R, Lozano L, et al. 2011. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant, Cell & Environment 34:1176−90

doi: 10.1111/j.1365-3040.2011.02316.x
[25]

Kim S, Hwang G, Lee S, Zhu JY, Paik I, et al. 2017. High ambient temperature represses anthocyanin biosynthesis through degradation of HY5. Frontiers in Plant Science 8:1787

doi: 10.3389/fpls.2017.01787
[26]

Moon KM, Kwon EB, Lee B, Kim CY. 2020. Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules 25:2754

doi: 10.3390/molecules25122754
[27]

Stark RE, Tian S. 2018. The cutin biopolymer matrix. Annual Plant Reviews online 23:126−44

doi: 10.1002/9781119312994.apr0231
[28]

Yuri JA, Neira A, Quilodran A, Razmilic I, Motomura Y, et al. 2010. Sunburn on apples is associated with increases in phenolic compounds and antioxidant activity as a function of the cultivar and areas of the fruit. Journal of Food, Agriculture & Environment 8:920−25

[29]

Puumalainen J. 2019. Computational spectral imaging and band-pass filters for apple bruising degree assessment. Thesis. University of Eastern Finland, Finland. pp. 1−57.

[30]

Lu R. 2003. Detection of bruises on apples using near-infrared hyperspectral imaging. Transactions of the ASAE 46:523−30

doi: 10.13031/2013.12941
[31]

Xing J, Karoui R, De Baerdemaeker J. 2007. Combining multispectral reflectance and fluorescence imaging for identifying bruises and stem-end/calyx regions on golden delicious apples. Sensing and Instrumentation for Food Quality and Safety 1:105−12

doi: 10.1007/s11694-007-9013-1