[1]

Taherkhani H, Afroozi S. 2017. Investigating the performance characteristics of asphaltic concrete containing nano-silica. Civil Engineering Infrastructures Journal 50(1):75−93

doi: 10.7508/CEIJ.2017.01.005
[2]

Queiroz CAV, Gautam S. 1992. Road Infrastructure and Economic Development: Some Diagnostic Indicators. Vol 921. World Bank Publications. https://documents.worldbank.org/en/publication/documents-reports/documentdetail/383071468739248249/road-infrastructure-and-economic-development-some-diagnostic-indicators

[3]

Bagherian P, Aghabayk K, Hamidi A, Rahbar SA, Young W. 2020. Pavement performance prediction model development for Tehran. International Journal of Transportation Engineering 7(4):391−413

doi: 10.22119/IJTE.2020.152599.1437
[4]

Minu PK, Sreedevi BG, Roshina B. 2014. Development of pavement roughness model and maintenance priority index for Kerala State Highway I. International Journal of Engineering Research & Technology 3(11):IJERTV3IS110683

[5]

Taherkhani H. 2016. Investigating the effects of nanoclay and nylon fibers on the mechanical properties of asphalt concrete. Civil Engineering Infrastructures Journal 49(2):235−49

doi: 10.7508/CEIJ.2016.02.004
[6]

Zakeri H, Nejad FM, Fahimifar A. 2017. Image based techniques for crack detection, classification and quantification in asphalt pavement: a review. Archives of Computational Methods in Engineering. 24:935−77

doi: 10.1007/s11831-016-9194-z
[7]

Mathavan S, Kamal K, Rahman M. 2015. A review of three-dimensional imaging technologies for pavement distress detection and measurements. IEEE Transactions on Intelligent Transportation Systems. 16(5):2353−62

doi: 10.1109/TITS.2015.2428655
[8]

Semnarshad M, Saffarzadeh M. 2018. Evaluation of the effects of maintenance and rehabilitation projects on road user costs via HDM-4 software. International Journal of Transportation Engineering. 6(2):157−76

doi: 10.22119/IJTE.2017.50737
[9]

Kerali HGR, Odoki JB, Stannard EE. 2000. Overview of HDM-4. The highway development and management series. Vol. 1. World Road Association, PIARC, and the World Bank, Washington DC, USA. www.gtkp.com/document/the-highway-development-and-management-series-volume-one-overview-of-hdm-4/

[10]

Officials T. 2011. AASHTO Transportation Asset Management Guide: A Focus on Implementation. AASHTO. www.fhwa.dot.gov/asset/pubs/hif13047.pdf

[11]

Fitch EC. 1992. Maintenance Technology. In Proactive Maintenance for Mechanical Systems. Netherlands: Elsevier. pp. 1−18. https://doi.org/10.1016/b978-1-85617-166-3.50004-4

[12]

Swanson L. 2001. Linking maintenance strategies to performance. International Journal of Production Economics 70:237−44

doi: 10.1016/S0925-5273(00)00067-0
[13]

Levitt J. 2003. Complete Guide to Preventive and Predictive Maintenance. New York: Industrial Press Inc.

[14]

Sacramento C. 2018. California Transportation Asset Management Plan, Fiscal Years 2017/18-2026/27.

[15]

Marcelino P, de Lurdes Antunes M, Fortunato E. 2018. Comprehensive performance indicators for road pavement condition assessment. Structure and Infrastructure Engineering 14(11):1433−45

doi: 10.1080/15732479.2018.1446179
[16]

Karleuša B, Dragičević N, Deluka-Tibljaš A. 2013. Review of multicriteria-analysis methods application in decision making about transport infrastructure. https://doi.org/10.14256/JCE.850.2013

[17]

Gransberg DD, Tighe SL, Pittenger D, Miller MC. 2014. Sustainable pavement preservation and maintenance practices. In Climate change, energy, sustainability and pavements, eds. Gopalakrishnan K, Steyn W, Harvey J. Heidelberg: Springer, Berlin. pp. 393−418. https://doi.org/10.1007/978-3-662-44719-2_14

[18]

Coenen TBJ, Golroo A. 2017. A review on automated pavement distress detection methods. Cogent Engineering 4(1):1374822

doi: 10.1080/23311916.2017.1374822
[19]

Chan CY, Huang B, Yan X, Richards S. 2010. Investigating effects of asphalt pavement conditions on traffic accidents in Tennessee based on the pavement management system (PMS). Journal of Advanced Transportation 44(3):150−61

doi: 10.1002/atr.129
[20]

Shahin MY. 2005. Pavement Management for Airports, Roads, and Parking Lots. 1st Edition. Vol 501. Springer. http://dl1.wikitransport.ir/book/Pavement_Management_For_Airports_Roads_And_Parking_Lots_2005.pdf

[21]

Shahin MY, Walther JA. 1990. Pavement Maintenance Management for Roads and Streets Using the PAVER System. Construction engineering research lab (army) champaign. https://apps.dtic.mil/sti/citations/ADA227464

[22]

Sanabria N, Valentin V, Bogus S, Zhang G, Kalhor E. 2017. Comparing Neural Networks and Ordered Probit Models for Forecasting Pavement Condition in New Mexico. https://trid.trb.org/view/1437450

[23]

Wang W, Qin Y, Li X, Wang D, Chen H. 2017. Comparisons of faulting-based pavement performance prediction models. Advances in Materials Science and Engineering 2017:6845215

doi: 10.1155/2017/6845215
[24]

Anyala M, Odoki JB, Baker CJ. 2014. Hierarchical asphalt pavement deterioration model for climate impact studies. International Journal of Pavement Engineering 15(3):251−66

doi: 10.1080/10298436.2012.687105
[25]

Jeong H, Kim H, Kim K, Kim H. 2017. Prediction of flexible pavement deterioration in relation to climate change using fuzzy logic. Journal of Infrastructure Systems 23(4):04017008

doi: 10.1061/(ASCE)IS.1943-555X.0000363
[26]

Sultana M, Chai G, Chowdhury S, Martin T, Anissimov Y, Rahman A. 2018. Rutting and Roughness of Flood-Affected Pavements: Literature Review and Deterioration Models. Journal of Infrastructure Systems 24(2):04018006

doi: 10.1061/(ASCE)IS.1943-555X.0000413
[27]

Romano M, Siegel MS, Chan HYT. 2018. Creating a Predictive Model for Pavement Deterioration using Geographic Weighted Regression. Transportation Research Record 2672(40):166−75

doi: 10.1177/0361198118788430
[28]

Gupta A, Kumar P, Rastogi R. 2014. Critical review of flexible pavement performance models. KSCE Journal of Civil Engineering 18(1):142−48

doi: 10.1007/s12205-014-0255-2
[29]

Hunt PD, Bunker JM. 2003. Study of Site-Specific Roughness Progression for a Bitumen-Sealed Unbound Granular Pavement Network. Transportation Research Record:Journal of the Transportation Research Board 1819(1):273−81

doi: 10.3141/1819a-40
[30]

Haider SW, Chatti K, Buch N, Lyles RW, Pulipaka AS, et al. 2007. Effect of design and site factors on the long-term performance of flexible pavements. Journal of Performance of Constructed Facilities 21(4):283−92

doi: 10.1061/(asce)0887-3828(2007)21:4(283)
[31]

Tighe S. 2002. Evaluation of subgrade and climatic zone influences on pavement performance in the Canadian Strategic Highway Program's (C-SHRP) Long-Term Pavement Performance (LTPP) study. Canadian Geotechnical Journal 39(2):377−87

doi: 10.1139/t01-111
[32]

Morosiuk G, Riley M. 2004. Modelling Road Deterioration and Works Effects in HDM-4. Paris, France. https://trid.trb.org/view/1151788

[33]

Prozzi JA, Madanat SM. 2002. A Nonlinear Model for Predicting Pavement Serviceability. Applications of Advanced Technologies in Transportation, Seventh International Conference on Applications of Advanced Technologies in Transportation (AATT), 8/5/2002, Boston Marriot, Cambridge, Massachusetts, United States. USA: American Society of Civil Engineers. pp. 481−88. https://doi.org/10.1061/40632(245)61

[34]

Hoerner TE, Darter MI, Khazanovich L, Titus-Glover L, Smith KL. 2000. Improved Prediction Models For PCC Pavement Performance-Related Specifications. Final Report. Volume I. www.fhwa.dot.gov/publications/research/infrastructure/pavements/pccp/pavespec/00130.pdf

[35]

Ramadan E, Beckedahl HJ. 2017. Development of an incremental method for mechanistic asphalt concrete pavement deterioration models. Czech Technical University in Prague - Central Library. https://doi.org/10.14311/ee.2016.355

[36]

Norouzi, Richard Kim. 2017. Mechanistic evaluation of fatigue cracking in asphalt pavements. International Journal of Pavement Engineering 18(6):530−46

doi: 10.1080/10298436.2015.1095909
[37]

Shah YU, Jain SS, Tiwari D, Jain MK. 2013. Development of Overall Pavement Condition Index for Urban Road Network. Procedia - Social and Behavioral Sciences 104:332−41

doi: 10.1016/j.sbspro.2013.11.126
[38]

Paz e Albuquerque T, Almeida de Melo R, Bezerra de Morais LM, Quintino Lira Oliveira L, Cirne de Azevedo Filho A. 2022. Development of a flexible pavement condition index for urban road network. Transportes 30(2):2553

doi: 10.14295/transportes.v30i2.2553
[39]

Al-Suleiman TI, Bazlamit SM, Azzama M, Ahmad HS. 2020. Pavement Deterioration Rate and Maintenance Cost for Low-Volume Roads. MATEC Web of Conferences 312:06002

doi: 10.1051/matecconf/202031206002
[40]

Joni HH, Hilal MM, Abed MS. 2020. Developing International Roughness Index (IRI) Model from visible pavement distresses. IOP Conference Series: Materials Science and Engineering 737:012119

doi: 10.1088/1757-899X/737/1/012119
[41]

Harikeerthan MK, Jagadeesh HS, Kumar V. 2020. Pavement deterioration modelling of urban roads in Bangalore city. International Research Journal of Engineering and Technology 7(9):2944−52

doi: 10.2139/ssrn.3777767
[42]

Alaswadko N, Hassan R, Meyer D, Mohammed B. 2019. Modelling roughness progression of sealed granular pavements: a new approach. International Journal of Pavement Engineering. 20(2):222−32

doi: 10.1080/10298436.2017.1283689
[43]

Mamlouk M, Vinayakamurthy M, Underwood BS, Kaloush KE. 2018. Effects of the International Roughness Index and Rut Depth on Crash Rates. Transportation Research Record 2672(40):418−29

doi: 10.1177/0361198118781137
[44]

Hassan R, Lin O, Thananjeyan A. 2017. A comparison between three approaches for modelling deterioration of five pavement surfaces. International Journal of Pavement Engineering. 18(1):26−35

doi: 10.1080/10298436.2015.1030744
[45]

Sylvestre O, Bilodeau JP, Doré G. 2019. Effect of frost heave on long-term roughness deterioration of flexible pavement structures. International Journal of Pavement Engineering 20(6):704−13

doi: 10.1080/10298436.2017.1326598
[46]

Sultana M, Chai G, Martin T, Chowdhury S. 2016. Modeling the Postflood Short-Term Behavior of Flexible Pavements. Journal of Transportation Engineering 142(10):04016042

doi: 10.1061/(ASCE)TE.1943-5436.0000873
[47]

Ziari H, Sobhani J, Ayoubinejad J, Hartmann T. 2016. Prediction of IRI in short and long terms for flexible pavements: ANN and GMDH methods. International Journal of Pavement Engineering. 17(9):776−88

doi: 10.1080/10298436.2015.1019498
[48]

Luo C. 2014. Pavement deterioration modeling and design of a composite pavement distress index for Kentucky Interstate Highways and Parkways. Master's Thesis. University of Louisville, USA. https://doi.org/10.18297/etd/868

[49]

Shahini SS, Sadat H, Tari Y, Birken R, Wang M. 2014. Deterioration Forecasting in Flexible Pavements Due to Floods and Snow Storms. EWSHM - 7th European Workshop on Structural Health Monitoring, IFFSTTAR, Inria, Université de Nantes, Jul 2014, Nantes, France. https://hal.inria.fr/hal-01021211

[50]

Prasad JR, Kanuganti S, Bhanegaonkar PN, Sarkar AK, Arkatkar S. 2013. Development of relationship between roughness (IRI) and visible surface distresses: A study on PMGSY roads. Procedia - Social and Behavioral Sciences 104:322−31

doi: 10.1016/j.sbspro.2013.11.125
[51]

Owolabi AO, Sadiq OM, Abiola OS. 2012. Development of performance models for a typical flexible road pavement in Nigeria. International Journal for Traffic and Transport Engineering 2:178−84

doi: 10.7708/ijtte.2012.2(3).02
[52]

Chen C, Zhang J. 2011, Comparisons of IRI-Based Pavement Deterioration Prediction Models Using New Mexico Pavement Data. In: Geo-Frontiers, 2011. Dallas, Texas, USA. Reston, VA: American Society of Civil Engineers. pp. 4594−603. https://doi.org/10.1061/41165(397)470

[53]

Sidess A, Ravina A, Oged E. 2022. A model for predicting the deterioration of the international roughness index. International Journal of Pavement Engineering 23(5):1393−403

doi: 10.1080/10298436.2020.1804062
[54]

Gupta A. 2019. Prioritization of rural roads maintenance in hilly terrain doctor of philosophy. Thesis. Jaypee University of Information Technology, Waknaghat. www.ir.juit.ac.in:8080/jspui/bitstream/123456789/2610/1/PHD0193_Aakash%20Gupta_166605_CE_2019.pdf

[55]

Katicha SW, Flintsch GW, Bryce JM, Wheeler AF, Diefenderfer BK. 2016. Development of Enhanced Pavement Deterioration Curves. http://www.virginiadot.org/vtrc/main/online_reports/pdf/17-r7.pdf

[56]

Mohd Hasan MR, Hiller JE, You Z. 2016. Effects of mean annual temperature and mean annual precipitation on the performance of flexible pavement using ME design. International Journal of Pavement Engineering 17(7):647−58

doi: 10.1080/10298436.2015.1019504
[57]

Jung YS, Zollinger DG. 2011. New Laboratory-Based Mechanistic–Empirical Model for Faulting in Jointed Concrete Pavement. Transportation Research Record 2226(1):60−70

doi: 10.3141/2226-07
[58]

Perera RW, Kohn SD. 2001. LTPP Data Analysis: Factors Affecting Pavement Smoothness. Transportation Research Board, National Research Council Washington, DC.

[59]

Ling M, Luo X, Chen Y, Gu F, Lytton RL. 2020. Mechanistic-empirical models for top-down cracking initiation of asphalt pavements. International Journal of Pavement Engineering. 21(4):464−73

doi: 10.1080/10298436.2018.1489134
[60]

George KP, Rajagopal AS, Lim LK. 1989. Models for Predicting Pavement Deterioration. Transportation Research Record 1215:1-7 https://onlinepubs.trb.org/Onlinepubs/trr/1989/1215/1215-001.pdf

[61]

Marcelino P, de Lurdes Antunes M, Fortunato E, Gomes MC. 2021. Machine learning approach for pavement performance prediction. International Journal of Pavement Engineering 22(3):341−54

doi: 10.1080/10298436.2019.1609673
[62]

Gong H, Sun Y, Hu W, Polaczyk PA, Huang B. 2019. Investigating impacts of asphalt mixture properties on pavement performance using LTPP data through random forests. Construction and Building Materials 204:203−12

doi: 10.1016/j.conbuildmat.2019.01.198
[63]

Ashrafian A, Taheri Amiri MJ, Masoumi P, Asadi-shiadeh M, Yaghoubi-chenari M, et al. 2020. Classification-based regression models for prediction of the mechanical properties of roller-compacted concrete pavement. Applied Sciences. 10(11):3707

doi: 10.3390/app10113707
[64]

Arhin SA, Noel EC. 2014. Predicting Pavement Condition Index from International Roughness Index in Washington, DC. Deptartment of Transportation, District of Columbia, Washington. https://rosap.ntl.bts.gov/view/dot/28282/dot_28282_DS1.pdf

[65]

Madanat SM, Karlaftis MG, McCarthy PS. 1997. Probabilistic infrastructure deterioration models with panel data. Journal of Infrastructure Systems 3(1):4−9

doi: 10.1061/(asce)1076-0342(1997)3:1(4)
[66]

Kobayashi K, Kaito K. 2017. Big data-based deterioration prediction models and infrastructure management: towards assetmetrics. Structure and Infrastructure Engineering. 13(1):84−93

doi: 10.1080/15732479.2016.1198407
[67]

Jin Y, Mukherjee A. 2014. Markov Chain Applications in Modelling Facility Condition Deterioration. International Journal of Critical Infrastructures 10:93−112

doi: 10.1504/ijcis.2014.062965
[68]

National Academies of Scinces, Engineering, and Medicine. 2012. Estimating Life Expectancies of Highway Assets, Volume 1: Guidebook. Washington, DC: Transportation Research Board, The National Academies Press. 150 pp. https://doi.org/10.17226/22782

[69]

Pantuso A, Flintsch GW, Katicha SW, Loprencipe G. 2021. Development of network-level pavement deterioration curves using the linear empirical Bayes approach. International Journal of Pavement Engineering 22(6):780−93

doi: 10.1080/10298436.2019.1646912
[70]

Issa A, Abu Eisheh S. 2019. Development of pavement performance model for proper rehabilitation and maintenance using first order Markov chain. Proceedings of International Structural Engineering and Construction 6:1−6

doi: 10.14455/isec.res.2019.60
[71]

Gursoy B. 2019. Network Level Pavement Deterioration Prediction Modeling For Network Level Pavement Deterioration Prediction Modeling For the City of Syracuse the City of Syracuse. Thesis. Syracuse University, USA. https://surface.syr.edu/thesis/374

[72]

Rose S, Mathew BS, Isaac KP, Abhaya AS. 2018. Risk based probabilistic pavement deterioration prediction models for low volume roads. International Journal of Pavement Engineering 19(1):88−97

doi: 10.1080/10298436.2016.1162308
[73]

Soncim SP, Oliveira ICS, Santos FB, Oliveira CA. 2018. Development of probabilistic models for predicting roughness in asphalt pavement. Road Materials and Pavement Design. 19(6):1448−57

doi: 10.1080/14680629.2017.1304233
[74]

Saha P, Ksaibati K, Atadero R. 2017. Developing pavement distress deterioration models for pavement management system using Markovian probabilistic process. Advances in Civil Engineering 2017:8292056

doi: 10.1155/2017/8292056
[75]

Abaza KA. 2017. Empirical Markovian-based models for rehabilitated pavement performance used in a life cycle analysis approach. Structure and Infrastructure Engineering 13(5):625−36

doi: 10.1080/15732479.2016.1187180
[76]

Abaza KA. 2016. Simplified staged-homogenous Markov model for flexible pavement performance prediction. Road Materials and Pavement Design 17(2):365−81

doi: 10.1080/14680629.2015.1083464
[77]

Moghaddass R, Zuo MJ, Liu Y, Huang HZ. 2015. Predictive analytics using a nonhomogeneous semi-Markov model and inspection data. IIE transactions 47(5):505−20

doi: 10.1080/0740817X.2014.959672
[78]

Chen D, Ap L, Cavalline TL, Darren PE, Thompson S, et al. 2014. Development and Validation of Pavement Deterioration Models and Analysis Weight Factors for the NCDOT Pavement Management System (Phase I: Windshield Survey Data). Department of Engineering Technology and Construction Management University of North Carolina, Charlotte, North Carolina. https://connect.ncdot.gov/projects/research/RNAProjDocs/2011-01-Phase%20II_Final%20Report.pdf

[79]

Khan MU, Mesbah M, Ferreira L, Williams DJ. 2014. Development of road deterioration models incorporating flooding for optimum maintenance and rehabilitation strategies. Road & Transport Research: A Journal of Australian and New Zealand Research and Practice 23(1):3−24

[80]

Thomas O, Sobanjo J. 2013. Comparison of Markov chain and semi-Markov models for crack deterioration on flexible pavements. Journal of Infrastructure Systems 19(2):186−95

doi: 10.1061/(ASCE)IS.1943-555X.0000112
[81]

Gao L, Aguiar-Moya JP, Zhang Z. 2012. Bayesian analysis of heterogeneity in modeling of pavement fatigue cracking. Journal of Computing in Civil Engineering 26(1):37−43

doi: 10.1061/(ASCE)CP.1943-5487.0000114
[82]

Abaza KA. 2011. Stochastic approach for design of flexible pavement: A case study for low volume roads. Road Materials and Pavement Design 12(3):663−85

doi: 10.1080/14680629.2011.9695265
[83]

Kobayashi K, Do M, Han D. 2010. Estimation of Markovian transition probabilities for pavement deterioration forecasting. KSCE Journal of Civil Engineering 14(3):343−51

doi: 10.1007/s12205-010-0343-x
[84]

Abaza KA, Murad M. 2009. Predicting flexible pavement remaining strength and overlay design thickness with stochastic modeling. Transportation Research Record 2094:62−70

doi: 10.3141/2094-07
[85]

Pulugurta H, Shao Q, Chou YJ. 2009. Pavement condition prediction using Markov process. Journal of Statistics and Management Systems 12(5):853−71

doi: 10.1080/09720510.2009.10701426
[86]

Abaza KA, Murad MM. 2007. Dynamic probabilistic approach for long-term pavement restoration program with added user cost. Transportation Research Record: Journal of the Transportation Research Board 1990(1):48−56

doi: 10.3141/1990-06
[87]

Ortiz-García JJ, Costello SB, Snaith MS. 2006. Derivation of transition probability matrices for pavement deterioration modeling. Journal of Transportation Engineering 132(2):141−61

doi: 10.1061/(ASCE)0733-947X(2006)132:2(141)
[88]

Yang J, Gunaratne M, Lu JJ, Dietrich B. 2005. Use of recurrent Markov chains for modeling the crack performance of flexible pavements. Journal of Transportation Engineering 131(11):861−72

doi: 10.1061/(ASCE)0733-947X(2005)131:11(861)
[89]

Shahin MY. 2005. Pavement Management for Airports, Roads, and Parking Lots. 2nd edition. New York: Springer. https://doi.org/10.1007/b101538

[90]

Abaza KA. 2005. Performance-based models for flexible pavement structural overlay design. Journal of Transportation Engineering 131(2):149−59

doi: 10.1061/(ASCE)0733-947X(2005)131:2(149)
[91]

Abaza KA, Abu-Eisheh SA. 2003. An optimum design approach for flexible pavements. International Journal of Pavement Engineering. 4(1):1−11

doi: 10.1080/1029843031000087464
[92]

Hong HP, Wang SS. 2003. Stochastic modeling of pavement performance. International Journal of Pavement Engineering 4(4):235−43

doi: 10.1080/10298430410001672246
[93]

Ferreira A, Picado-Santos L, Antunes A. 2002. A segment-linked optimization model for deterministic pavement management systems. International Journal of Pavement Engineering 3(2):95−105

doi: 10.1080/10298430290030603
[94]

Mishalani RG, Madanat SM. 2002. Computation of infrastructure transition probabilities using stochastic duration models. Journal of Infrastructure Systems 8(4):139−48

doi: 10.1061/(ASCE)1076-0342(2002)8:4(139)
[95]

Ferreira A, Picado-Santos L, Antunes A. 1999. Pavement performance modelling: State of the art. In: Proceedings of Seventh International Conference on Civil and Structural Engineering Computing, eds. Topping BHV, Kumar B. Edinburgh, UK: Civil-Comp Press. pp. 157−264. https://doi.org/10.4203/ccp.58.8.1

[96]

Li N, Xie WC, Haas R. 1996. Reliability-based processing of Markov chains for modeling pavement network deterioration. Transportation Research Record: Journal of the Transportation Research Board 1524(1):203−13

doi: 10.1177/0361198196152400124
[97]

Madanat S, Mishalani R, Ibrahim WHW. 1995. Estimation of infrastructure transition probabilities from condition rating data. Journal of Infrastructure Systems 1(2):120−25

doi: 10.1061/(ASCE)1076-0342(1995)1:2(120)
[98]

Wang KCP, Zaniewski J, Way G. 1994. Probabilistic behavior of pavements. Journal of Transportation Engineering 120(3):358−75

doi: 10.1061/(ASCE)0733-947X(1994)120:3(358)
[99]

Butt AA, Shahin MY, Feighan KJ, Carpenter SH. 1987. Pavement performance prediction model using the Markov process. Transportation Research Board. vol. 1123. pp. 12−19. http://onlinepubs.trb.org/Onlinepubs/trr/1987/1123/1123-002.pdf

[100]

Golabi K, Kulkarni RB, Way GB. 1982. A statewide pavement management system. Interfaces 12(6):5−21

doi: 10.1287/inte.12.6.5
[101]

Karan MA, Haas RC. 1976. Determining investment priorities for urban pavement improvements. Association of Asphalt Paving Technologists Proc., New Orleans, Louisiana, February 16-18, 1976 Vol 45.

[102]

Chen D, Mastin N. 2016. Sigmoidal models for predicting pavement performance conditions. Journal of Performance of Constructed Facilities 30(4):04015078

doi: 10.1061/(ASCE)CF.1943-5509.0000833
[103]

Karimzadeh A, Shoghli O. 2020. Predictive analytics for roadway maintenance: A review of current models, challenges, and opportunities. Civil Engineering Journal (Iran) 6(3):602−25

doi: 10.28991/cej-2020-03091495
[104]

Morales FJ, Reyes A, Cáceres N, Romero LM, Benitez FG, et al. 2017. Historical maintenance relevant information road-map for a self-learning maintenance prediction procedural approach. IOP Conference Series: Materials Science and Engineering 236:012107

doi: 10.1088/1757-899X/236/1/012107
[105]

Guo R, Fu D, Sollazzo G. 2022. An ensemble learning model for asphalt pavement performance prediction based on gradient boosting decision tree. International Journal of Pavement Engineering 23(10):3633−46

doi: 10.1080/10298436.2021.1910825
[106]

Alatoom YI, Al-Suleiman (Obaidat) TI. 2022. Development of pavement roughness models using Artificial Neural Network (ANN). International Journal of Pavement Engineering 23(13):4622−37

doi: 10.1080/10298436.2021.1968396
[107]

Haddad AJ, Chehab GR, Saad GA. 2022. The use of deep neural networks for developing generic pavement rutting predictive models. International Journal of Pavement Engineering 23(12):4260−76

doi: 10.1080/10298436.2021.1942466
[108]

Issa A, Sammaneh H, Abaza K. 2022. Modeling pavement condition index using cascade architecture: classical and neural network methods. Iranian Journal of Science and Technology, Transactions of Civil Engineering 46(1):483−95

doi: 10.1007/s40996-021-00678-9
[109]

Sudhan SP, Mathew BS, Rose S, Isaac KP. 2020. Development of pavement deterioration prediction models for low volume roads using system dynamics. Journal of Transportation Engineering, Part B: Pavements 146(3):05020001

doi: 10.1061/JPEODX.0000170
[110]

Choi S, Do M. 2020. Development of the road pavement deterioration model based on the deep learning method. Electronics 9(1):3

doi: 10.3390/electronics9010003
[111]

Hussan S, Kamal MA, Hafeez I, Ahmad N. 2019. Evaluation and modelling of permanent deformation behaviour of asphalt mixtures using dynamic creep test in uniaxial mode. International Journal of Pavement Engineering. 20(9):1026−43

doi: 10.1080/10298436.2017.1380805
[112]

Rezaei-Tarahomi A, Ceylan H, Gopalakrishnan K, Kim S, Kaya O, et al. 2019. Artificial neural network models for airport rigid pavement top-down critical stress predictions: Sensitivity evaluation. Airfield and Highway Pavements 2019: Innovation and Sustainability in Highway and Airfield Pavement Technology, 2019. Virginia, USA: American Society of Civil Engineers Reston. pp. 302−12. https://doi.org/10.1061/9780784482476.030

[113]

Yao L, Dong Q, Jiang J, Ni F. 2019. Establishment of Prediction Models of Asphalt Pavement Performance based on a Novel Data Calibration Method and Neural Network. Transportation Research Record: Journal of the Transportation Research Board 2673(1):66−82

doi: 10.1177/0361198118822501
[114]

Chopra T, Parida M, Kwatra N, Chopra P. 2018. Development of pavement distress deterioration prediction models for urban road network using genetic programming. Advances in Civil Engineering 2018:1253108

doi: 10.1155/2018/1253108
[115]

Okuda T, Suzuki K, Kohtake N. 2017. Proposal and evaluation of pavement deterioration prediction method by recurrent neural network. International Journal of Advanced Research in Engineering. 3(4):16

[116]

Marcelino P, de Lurdes Antunes M, Fortunato E, Gomes MC. 2017. Machine Learning for Pavement Friction Prediction Using Scikit-Learn. In EPIA 2017: Progress in Artificial Intelligence, eds. Oliveira E, Gama J, Vale Z, Lopes Cardoso H. Cham: Springer. pp. 331−42. https://doi.org/10.1007/978-3-319-65340-2_28

[117]

Hamdi, Hadiwardoyo SP, Correia AG, Pereira P, Cortez P. 2017. Prediction of surface distress using neural networks. Proceedings of the 3rd International Conference on Engineering, Technology, and Industrial Application (ICETIA 2016), Surakarta, Indonesiam, 7–8 December, 2016. Vol 1855. USA: AIP Publishing. https://doi.org/10.1063/1.4985502

[118]

Amin SR, Amador-Jiménez LE. 2017. Backpropagation Neural Network to estimate pavement performance: dealing with measurement errors. Road Materials and Pavement Design 18(5):1218−38

doi: 10.1080/14680629.2016.1202129
[119]

Ziari H, Maghrebi M, Ayoubinejad J, Waller ST. 2016. Prediction of pavement performance: Application of support vector regression with different kernels. Transportation Research Record: Journal of the Transportation Research Board 2589(1):135−45

doi: 10.3141/2589-15
[120]

Karlaftis AG, Badr A. 2015. Predicting asphalt pavement crack initiation following rehabilitation treatments. Transportation Research Part C: Emerging Technologies 55:510−17

doi: 10.1016/j.trc.2015.03.031
[121]

Kargah-Ostadi N, Stoffels SM. 2015. Framework for Development and Comprehensive Comparison of Empirical Pavement Performance Models. Journal of Transportation Engineering 141(8):04015012

doi: 10.1061/(ASCE)TE.1943-5436.0000779
[122]

Sirvio K, Hollmén J. 2014. Multi-Step Ahead Forecasting of Road Condition Using Least Squares Support Vector Regression. ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges (Belgium), 23−25 April 2014. www.esann.org/sites/default/files/proceedings/legacy/es2014-37.pdf

[123]

Lee YH, Ker HW, Liu YB. 2014. Applications of Artificial Neural Networks to Pavement Prediction Modeling: A Case Study. 10th Asia Pacific Transportation Development Conference: Challenges and Advances in Sustainable Transportation Systems, Beijing, China, May 25, 2014. USA: American Society of Civil Engineers. pp. 289−95. https://doi.org/10.1061/9780784413364.035

[124]

Chandra S, Sekhar CR, Bharti AK, Kangadurai B. 2013. Relationship between pavement roughness and distress parameters for indian highways. Journal of Transportation Engineering 139(5):467−75

doi: 10.1061/(ASCE)TE.1943-5436.0000512
[125]

Bosurgi G, Trifirò F, Xibilia MG. 2007. Artificial neural network for predicting road pavement conditions. 4th International SIIV Congress, Palermo, Italy, 12−14 September 2007 . www.siiv.net/site/sites/default/files/Documenti/palermo/63_2848_20080110110324.pdf

[126]

Yang J, Lu JJ, Gunaratne M. 2003. Application of Neural Network Models for Forecasting of Pavement Crack Index and Pavement Condition Rating. Technical Report. University of South Florida, Tampa. https://fdotwww.blob.core.windows.net/sitefinity/docs/default-source/research/reports/fdot-bc353-13rpt.pdf

[127]

Huang Y, Moore RK. 1997. Roughness level probability prediction using artificial neural networks. Transportation Research Record: Journal of the Transportation Research Board 1592(1):89−97

doi: 10.3141/1592-11
[128]

Alsugair AM, Al-Qudrah AA. 1998. Artificial neural network approach for pavement maintenance. Journal of computing in civil engineering. 12(4):249−55

doi: 10.1061/(ASCE)0887-3801(1998)12:4(249)
[129]

Felker V. 2005. Characterizing the Roughness of Kansas PCC and Superpave Pavements. Thesis. Kansas State University, USA.