[1] |
Li M, Yuyama N, Hirata M, Han J, Wang Y, et al. 2009. Construction of a high-density SSR marker-based linkage map of zoysiagrass (Zoysia japonica Steud.). Euphytica 170:327−38 doi: 10.1007/s10681-009-9990-8 |
[2] |
Patton AJ, Schwartz BM, Kenworthy KE. 2017. Zoysiagrass (Zoysia spp.) history, utilization, and improvement in the United States: a review. Crop Science 57:S-37−S-72 doi: 10.2135/cropsci2017.02.0074 |
[3] |
Hinton JD, Livingston DP, III, Miller GL, Peacock CH, Tuong T. 2012. Freeze tolerance of nine zoysiagrass cultivars using natural cold acclimation and freeze chambers. HortScience 47:112−15 doi: 10.21273/HORTSCI.47.1.112 |
[4] |
Patton AJ, Cunningham SM, Volenec JJ, Reicher ZJ. 2007. Differences in freeze tolerance of zoysiagrasses: II. Carbohydrate and proline accumulation. Crop Science 47:2170−81 doi: 10.2135/cropsci2006.12.0784 |
[5] |
Baier M, Bittner A, Prescher A, van Buer J. 2019. Preparing plants for improved cold tolerance by priming. Plant, Cell & Environment 42:782−800 doi: 10.1111/pce.13394 |
[6] |
Chinnusamy V, Zhu J, Zhu J. 2007. Cold stress regulation of gene expression in plants. Trends in Plant Science 12:444−51 doi: 10.1016/j.tplants.2007.07.002 |
[7] |
Huang X, Cao L, Fan J, Ma G, Chen L. 2022. CdWRKY2-mediated sucrose biosynthesis and CBF-signalling pathways coordinately contribute to cold tolerance in bermudagrass. Plant Biotechnology Journal 20:660−75 doi: 10.1111/pbi.13745 |
[8] |
Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF. 2000. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiology 124:1854−65 doi: 10.1104/pp.124.4.1854 |
[9] |
Gilmour SJ, Fowler SG, Thomashow MF. 2004. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Molecular Biology 54:767−81 doi: 10.1023/B:PLAN.0000040902.06881.d4 |
[10] |
Wei S, Du Z, Gao F, Ke X, Li J, et al. 2015. Global transcriptome profiles of 'Meyer' Zoysiagrass in response to cold stress. PLoS ONE 10:e0131153 doi: 10.1371/journal.pone.0131153 |
[11] |
Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, et al. 2003. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development 17:1043−54 doi: 10.1101/gad.1077503 |
[12] |
Hundertmark M, Hincha DK. 2008. LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118 doi: 10.1186/1471-2164-9-118 |
[13] |
Thomashow MF. 1998. Role of cold-responsive genes in plant freezing tolerance. Plant Physiology 118:1−8 doi: 10.1104/pp.118.1.1 |
[14] |
Holloway HMP, Yu X, Dunne JC, Schwartz BM, Patton AJ, et al. 2018. A SNP-based high-density linkage map of zoysiagrass (Zoysia japonica Steud.) and its use for the identification of QTL associated with winter hardiness. Molecular Breeding 38:10 doi: 10.1007/s11032-017-0763-0 |
[15] |
Brown JM, Yu X, Holloway HMP, Tuong TD, Schwartz BM, et al. 2021. Identification of QTL associated with cold acclimation and freezing tolerance in Zoysia japonica. Crop Science 61:3044−55 doi: 10.1002/csc2.20368 |
[16] |
Brown JM, Yu X, Holloway HMP, DaCosta M, Bernstein RP, et al. 2020. Differences in proteome response to cold acclimation in Zoysia japonica cultivars with different levels of freeze tolerance. Crop Science 60:2744−56 doi: 10.1002/csc2.20225 |
[17] |
Han Q, Zhu Q, Shen Y, Lee M, Lübberstedt T, et al. 2022. QTL mapping low-temperature germination ability in the maize IBM Syn10 DH population. Plants 11:214 doi: 10.3390/plants11020214 |
[18] |
Lei L, Zheng H, Bi Y, Yang L, Liu H, et al. 2020. Identification of a major QTL and candidate gene analysis of salt tolerance at the bud burst stage in rice (Oryza sativa L.) using QTL-Seq and RNA-Seq. Rice 13:55 doi: 10.1186/s12284-020-00416-1 |
[19] |
Patton AJ. 2009. Selecting zoysiagrass cultivars: turfgrass quality, growth, pest and environmental stress tolerance. Applied Turfgrass Science 6:1−18 doi: doi.org/10.1094/ats-2009-1019-01-mg |
[20] |
Chen L, Fan J, Hu L, Hu Z, Xie Y, et al. 2015. A transcriptomic analysis of bermudagrass (Cynodon dactylon) provides novel insights into the basis of low temperature tolerance. BMC Plant Biology 15:216 doi: 10.1186/s12870-015-0598-y |
[21] |
Anderson JA, Taliaferro CM, Martin DL. 1993. Evaluating freeze tolerance of bermudagrass in a controlled environment. HortScience 28:955 doi: 10.21273/HORTSCI.28.9.955 |
[22] |
Tanaka H, Hirakawa H, Kosugi S, Nakayama S, Ono A, et al. 2016. Sequencing and comparative analyses of the genomes of zoysiagrasses. DNA Research 23:171−80 doi: 10.1093/dnares/dsw006 |
[23] |
Anders S, Pyl PT, Huber W. 2015. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166−69 doi: 10.1093/bioinformatics/btu638 |
[24] |
Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biology 11:R106 doi: 10.1186/gb-2010-11-10-r106 |
[25] |
Young MD, Wakefield MJ, Smyth GK, Oshlack A. 2010. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology 11:R14 doi: 10.1186/gb-2010-11-2-r14 |
[26] |
Holloway HPM. 2016. Genomic approaches for improving freeze tolerance in zoysiagrass. Thesis. North Carolina State University, U. S. |
[27] |
Guy CL. 1990. Cold acclimation and freezing stress tolerance: role of protein metabolism. Annual Review of Plant Physiology and Plant Molecular Biology 41:187−223 doi: 10.1146/annurev.pp.41.060190.001155 |
[28] |
Hannah MA, Heyer AG, Hincha DK. 2005. A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genetics 1:e26 doi: 10.1371/journal.pgen.0010026 |
[29] |
Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, et al. 2004. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. The Plant Journal 38:982−93 doi: 10.1111/j.1365-313X.2004.02100.x |
[30] |
Liu Z, Jia Y, Ding Y, Shi Y, Li Z, et al. 2017. Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response. Molecular Cell 66:117−128.E5 doi: 10.1016/j.molcel.2017.02.016 |
[31] |
Finkel T. 2011. Signal transduction by reactive oxygen species. Journal of Cell Biology 194:7−15 doi: 10.1083/jcb.201102095 |
[32] |
Lin F, Zhou L, He B, Zhang X, Dai H, et al. 2019. QTL mapping for maize starch content and candidate gene prediction combined with co-expression network analysis. Theoretical and Applied Genetics 132:1931−41 doi: 10.1007/s00122-019-03326-z |
[33] |
Septiani P, Lanubile A, Stagnati L, Busconi M, Nelissen H, et al. 2019. Unravelling the genetic basis of Fusarium seedling rot resistance in the MAGIC maize population: novel targets for breeding. Scientific Reports 9:5665 doi: 10.1038/s41598-019-42248-0 |
[34] |
Naoumkina M, Thyssen GN, Fang DD, Jenkins JN, Mccarty JC, et al. 2019. Genetic and transcriptomic dissection of the fiber length trait from a cotton (Gossypium hirsutum L.) MAGIC population. BMC Genomics 20:112 doi: 10.1186/s12864-019-5427-5 |
[35] |
Kim KN, Cheong YH, Gupta R, Luan S. 2000. Interaction specificity of Arabidopsis calcineurin B-Like calcium sensors and their target kinases. Plant Physiology 124:1844−53 doi: 10.1104/pp.124.4.1844 |
[36] |
Huang C, Ding S, Zhang H, Du H, An L. 2011. CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Science 181:57−64 doi: 10.1016/j.plantsci.2011.03.011 |
[37] |
Wu C. 1995. Heat shock transcription factors: structure and regulation. Annual Review of Cell and Developmental Biology 11:441−69 doi: 10.1146/annurev.cb.11.110195.002301 |
[38] |
Sasaki K, Christov NK, Tsuda S, Imai R. 2014. Identification of a novel LEA protein involved in freezing tolerance in wheat. Plant and Cell Physiology 55:136−47 doi: 10.1093/pcp/pct164 |
[39] |
Ogaya R, Peñuelas J, Asensio D, Llusià J. 2011. Chlorophyll fluorescence responses to temperature and water availability in two co-dominant Mediterranean shrub and tree species in a long-term field experiment simulating climate change. Environmental and Experimental Botany 71:123−27 doi: 10.1016/j.envexpbot.2010.10.016 |
[40] |
Zhang J, Zhang Z, Liu W, Li L, Han L, et al. 2022. Transcriptome analysis revealed a positive role of ethephon on Chlorophyll metabolism of Zoysia japonica under cold stress. Plants 11:442 doi: 10.3390/plants11030442 |
[41] |
Li H, Ding Y, Shi Y, Zhang X, Zhang S, et al. 2017. MPK3- and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis. Developmental Cell 43:630−642.E4 doi: h10.1016/j.devcel.2017.09.025 |
[42] |
Zhao C, Wang P, Si T, Hsu CC, Wang L, et al. 2017. MAP kinase cascades regulate the cold response by modulating ICE1 protein stability. Developmental Cell 43:618−629.E5 doi: 10.1016/j.devcel.2017.09.024 |
[43] |
Kong Q, Qu N, Gao M, Zhang Z, Ding X, et al. 2012. The MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates immunity mediated by a mitogen-activated protein kinase kinase kinase in Arabidopsis. The Plant Cell 24:2225−36 doi: 10.1105/tpc.112.097253 |