[1]

Hassanain MA, Abdul Hafeez M. 2005. Fire safety evaluation of restaurant facilities. Structural Survey 23(4):298−309

doi: 10.1108/02630800510630475
[2]

Shokouhi M, Nasiriani K, Cheraghi Z, Ardalan A, Khankeh H, et al. 2019. Preventive measures for fire-related injuries and their risk factors in residential buildings: a systematic review. Journal of Injury & Violence Research 11(1):1−14

doi: 10.5249/jivr.v11i1.1057
[3]

Kim J, Youm S, Shan Y, Kim J. 2021. Analysis of fire accident factors on construction sites using web crawling and deep learning approach. Sustainability 13(21):11694

doi: 10.3390/su132111694
[4]

Du F, Zhang Q, Wang K, Cui W, Guo Y, et al. 2022. Study on crowd evacuation in subway transfer station fires based on numerical simulation. Emergency Management Science and Technology 2:16

doi: 10.48130/EMST-2022-0016
[5]

Wang K, Zhao W, Yuan Y, Jianyao Y, Song Y, et al. 2022. Influence of open and closed windows on the vertical spread characteristics of fire. Emergency Management Science and Technology 2:1

doi: 10.48130/EMST-2022-0001
[6]

Chang RH, Peng YT, Choi S, Cai C. 2022. Applying Artificial Intelligence (AI) to improve fire response activities. Emergency Management Science and Technology 2:7

doi: 10.48130/EMST-2022-0007
[7]

Page J, Whaley P, Bellingham M, Birnbaum LS, Cavoski A, et al. 2023. A new consensus on reconciling fire safety with environmental & health impacts of chemical flame retardants. Environment International 173:107782

doi: 10.1016/j.envint.2023.107782
[8]

Cheng XW, Ren-Cheng TA, Guan JP, Guoqiang CH, Yang XH. 2016. Simultaneous dyeing and flame retardant finishing of wool fabric with acid metal complex dyes and phytic acid. Textile and Apparel 26(3):303−6

[9]

Basak S, Samanta KK, Chattopadhyay SK. 2015. Fire retardant property of cotton fabric treated with herbal extract. The Journal of The Textile Institute 106(12):1338−1347

doi: 10.1080/00405000.2014.995456
[10]

Basak S, Chattopadhyay SK, Saxena S, Narkar R. 2018. Banana pseudostem sap and boric acid—A new green intumescent for making self-extinguishing cotton fabric. Indian Journal of Fibre & Textile Research (IJFTR) 43(1):36−43

[11]

Shikder AAR, Al Mamun MA, Islam T, Khan MHK, Uddin MZ. 2023. Fire retardant properties enhancement of cotton twill fabric using pumpkin (Cucurbita maxima) extract. Heliyon 9(4):e14806

doi: 10.1016/j.heliyon.2023.e14806
[12]

Omowanle J, Ayo RG, Habila J. 2019. Rice husk ash silicate composite as flame retarding agent in dehydrated castor seed oil alkyd resin paint coating. FUW Trends in Science & Technology Journal 4:262−68

[13]

Zabihi O, Ahmadi M, Khayyam H, Naebe M. 2016. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance. Scientific Reports 6(1):38194

doi: 10.1038/srep38194
[14]

Liu L, Qian M, Song PA, Huang G, Yu Y, et al. 2016. Fabrication of green lignin-based flame retardants for enhancing the thermal and fire retardancy properties of polypropylene/wood composites. ACS Sustainable Chemistry & Engineering 4(4):2422−31

doi: 10.1021/acssuschemeng.6b00112
[15]

Yang H, Yu B, Xu X, Bourbigot S, Wang H, Song P. 2020. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green chemistry 22(7):2129−61

doi: 10.1039/D0GC00449A
[16]

Shukla A, Sharma V, Basak S, Ali SW. 2019. Sodium lignin sulfonate: a bio-macromolecule for making fire retardant cotton fabric. Cellulose 26:8191−208

doi: 10.1007/s10570-019-02668-7
[17]

Łukawski D, Grześkowiak W, Lekawa-Raus A, Widelicka M, Lisiecki F, et al. 2020. Flame retardant effect of lignin/carbon nanotubes/potassium carbonate composite coatings on cotton roving. Cellulose 27:7271−81

doi: 10.1007/s10570-020-03270-y
[18]

Costes L, Laoutid F, Brohez S, Dubois P. 2017. Bio-based flame retardants: When nature meets fire protection. Materials Science and Engineering: R: Reports 117:1−25

doi: 10.1016/j.mser.2017.04.001
[19]

Basak S, Raja ASM, Saxena S, Patil PG. 2021. Tannin based polyphenolic bio-macromolecules: creating a new era towards sustainable flame retardancy of polymers. Polymer Degradation and Stability 189:109603

doi: 10.1016/j.polymdegradstab.2021.109603
[20]

Samani P, van der Meer Y. 2020. Life cycle assessment (LCA) studies on flame retardants: A systematic review. Journal of Cleaner Production, 274:123259

doi: 10.1016/j.jclepro.2020.123259
[21]

haw SD, Blum A, Weber R, Kannan K, Rich D, et al. 2010. Halogenated flame retardants: do the fire safety benefits justify the risks? Reviews on Environmental Health 25(4):261−305

doi: 10.1515/reveh.2010.25.4.261
[22]

Venier M, Salamova A, Hites RA. 2015. Halogenated flame retardants in the Great Lakes environment. Accounts of chemical research, 48(7):1853−61

doi: 10.1021/acs.accounts.5b00180
[23]

Marosi G, Szolnoki B, Bocz K, Toldy A. 2014. Reactive and additive phosphorus-based flame retardants of reduced environmental impact. In Polymer Green Flame Retardants, eds. Papaspyrides CD, Kiliaris P. pp. 181-220. Amsterdam, The Netherlands: Elsevier. https://doi.org/10.1016/b978-0-444-53808-6.00005-6

[24]

Schartel B. 2010. Phosphorus-based flame retardancy mechanisms—old hat or a starting point for future development? Materials 3(10):4710−45

doi: 10.3390/ma3104710
[25]

Scionti G, Piperopoulos E, Atria M, Calabrese L, Proverbio E. 2023. Effect of Magnesium Hydroxide and Aluminum Hydroxide as Thermal Barriers on the Flame-Retardant Behavior of Acrylic-Based Coating. Coatings 13(9):1517

doi: 10.3390/coatings13091517
[26]

Shen J, Liang J, Lin X, Lin H, Yu J, Wang S. 2021. The flame-retardant mechanisms and preparation of polymer composites and their potential application in construction engineering. Polymers 14(1):82

doi: 10.3390/polym14010082
[27]

Wen OY, Tohir MZM, Yeaw TCS, Razak MA, Zainuddin HS, et al. 2023. Fire-resistant and flame-retardant surface finishing of polymers and textiles: A state-of-the-art review. Progress in Organic Coatings 175:107330

doi: 10.1016/j.porgcoat.2022.107330
[28]

FLAMERETARDANTS-ONLINE. (n.d.) Mode of action. www.flameretardants-online.com/flame-retardants/mode-of-action (Accessed on 03.10.2023)

[29]

Salmeia KA, Jovic M, Ragaisiene A, Rukuiziene Z, Milasius R, et al. 2016. Flammability of cellulose-based fibers and the effect of structure of phosphorus compounds on their flame retardancy. Polymers 8(8):293

doi: 10.3390/polym8080293
[30]

Tawiah B, Ofori EA, Bin F. 2023. Scientometric Review of Sustainable Fire-Resistant Polysaccharide-Based Composite Aerogels. Sustainability 15(16):12185

doi: 10.3390/su151612185
[31]

Gani A, Naruse I. 2007. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renewable Energy 32(4):649−61

doi: 10.1016/j.renene.2006.02.017
[32]

Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S. 2015. Extraction and characterization of lignin from different biomass resources. Journal of Materials Research and Technology 4(1):26−32

doi: 10.1016/j.jmrt.2014.10.009
[33]

Zhang Q, Chen J, Li D, Sun L, Ren Y, et al. 2023. Simultaneous enhancement of mechanical strength and flame retardancy of lyocell fiber via filling fire-resistant cellulose-based derivative. Industrial Crops and Products, 199:116757

doi: 10.1016/j.indcrop.2023.116757
[34]

Hou F, Zhu M, Liu Y, Zhu K, Xu J, et al. 2022. A self-assembled bio-based coating with phytic acid and DL-arginine used for a flame-retardant and antibacterial cellulose fabric. Progress in Organic Coatings 173:107179

doi: 10.1016/j.porgcoat.2022.107179
[35]

Attia NF, Zakria AM, Nour MA, Abd El-Ghany NA, Elashery SEA. 2023. Rational strategy for construction of multifunctional coatings for achieving high fire safety, antibacterial, UV protection and electrical conductivity functions of textile fabrics. Materials Today Sustainability, 23:100450

doi: 10.1016/j.mtsust.2023.100450
[36]

Patankar KC, Biranje S, Pawar A, Maiti S, Shahid M, et al. 2022. Fabrication of chitosan-based finishing agent for flame-retardant, UV-protective, and antibacterial cotton fabrics. Materials Today Communications 33:104637

doi: 10.1016/j.mtcomm.2022.104637
[37]

Liu SH, Kuan CF, Ke CY, Shen MY, Chiang CL. 2023. Preparation and properties of bio-based intumescent flame retardant containing chitosan functionalized ammonium polyphosphate for polyurethane. Journal of Industrial and Engineering Chemistry 127:303−20

doi: 10.1016/j.jiec.2023.07.016
[38]

Huang Z, Li S, Tsai LC, Jiang T, Ma N, et al. 2022. Flame retardant polypropylene with a single molecule intumescent flame retardant based on chitosan. Materials Today Communications 33:104689

doi: 10.1016/j.mtcomm.2022.104689
[39]

Pan H, Wang W, Pan Y, Song L, Hu Y, et al. 2015. Formation of self-extinguishing flame-retardant biobased coating on cotton fabrics via Layer-by-Layer assembly of chitin derivatives. Carbohydrate Polymers 115:516−24

doi: 10.1016/j.carbpol.2014.08.084
[40]

Kundu CK, Hossen MT, Islam T, Mollick S, Song L, et al. 2022. Flame retardant coatings from bio-derived chitosan, sodium alginate, and metal salts for polyamide 66 textiles. ACS Omega 7(35):30841−48

doi: 10.1021/acsomega.2c02466
[41]

Attia NF, Oh H, El Ashery SEA. 2023. Design and fabrication of metal-organic-framework based coatings for high fire safety and UV protection, reinforcement and electrical conductivity properties of textile fabrics. Progress in Organic Coatings 179:107545

doi: 10.1016/j.porgcoat.2023.107545
[42]

Attia NF, Mohamed A, Hussein A, El-Demerdash AG, Kandil SH. 2023. Greener bio-based spherical nanoparticles for efficient multilayer textile fabrics nanocoating with outstanding fire retardancy, toxic gases suppression, reinforcement and antibacterial properties. Surfaces and Interfaces 36:102595

doi: 10.1016/j.surfin.2022.102595
[43]

Attia NF, Ebissy AAE, Morsy MS, Sadak RA, Gamal H. 2021. Influence of textile fabrics structures on thermal, UV shielding, and mechanical properties of textile fabrics coated with sustainable coating. Journal of Natural Fibers 18(12):2189−96

doi: 10.1080/15440478.2020.1724233
[44]

Lu Y, Zhao P, Chen Y, Huang T, Liu Y, et al. 2022. A bio-based macromolecular phosphorus-containing active cotton flame retardant synthesized from starch. Carbohydrate Polymers 298:120076

doi: 10.1016/j.carbpol.2022.120076
[45]

Passauer L. 2019. Thermal characterization of ammonium starch phosphate carbamates for potential applications as bio-based flame-retardants. Carbohydrate Polymers 211:69−74

doi: 10.1016/j.carbpol.2019.01.100
[46]

Yu X, Su X, Liu Y, Yu D, Ren Y, et al. 2023. Biomass intumescent flame retardant polyacrylonitrile composite: flame retardancy, smoke suppression and recycling. Composites Part A: Applied Science and Manufacturing 173:107647

doi: 10.1016/j.compositesa.2023.107647
[47]

Zhang Y, Li TT, Shiu BC, Lin JH, Lou CW. 2022. Multifunctional sodium Alginate@ urushiol fiber with targeted Antibacterial, acid corrosion resistance and flame-retardant properties for personal protection based on wet spinning. Applied Surface Science 584:152573

doi: 10.1016/j.apsusc.2022.152573
[48]

Lv J, Li Z, Dong R, Xue Y, Wang Y, et al. 2023. Highly flame-retardant materials of different divalent metal ions alginate/silver phosphate: Synthesis, characterizations, and synergistic phosphorus-polymetallic effects. International Journal of Biological Macromolecules 247:125834

doi: 10.1016/j.ijbiomac.2023.125834
[49]

Zhang LY, Song WM, Li P, Wang JS, Liu Y, et al. 2022. Green flame-retardant coatings based on iron alginate for polyester fabrics: Thermal stability, flame retardancy and mechanical properties. Polymer Degradation and Stability 206:110207

doi: 10.1016/j.polymdegradstab.2022.110207
[50]

Zhao HB, Chen M, Chen HB. 2017. Thermally insulating and flame-retardant polyaniline/pectin aerogels. ACS Sustainable Chemistry & Engineering 5(8):7012−19

doi: 10.1021/acssuschemeng.7b01247
[51]

Chen HB, Li XL, Chen MJ, He YR, Zhao HB. 2019. Self-cross-linked melamine-formaldehyde-pectin aerogel with excellent water resistance and flame retardancy. Carbohydrate Polymers 206:609−15

doi: 10.1016/j.carbpol.2018.11.041
[52]

Santos LP, da Silva DS, Morari TH, Galembeck F. 2021. Environmentally friendly, high-performance fire retardant made from cellulose and graphite. Polymers 13(15):2400

doi: 10.3390/polym13152400
[53]

Lou G, Ma Z, Dai J, Bai Z, Fu S, Huo S, et al. 2021. Fully biobased surface-functionalized microcrystalline cellulose via green self-assembly toward fire-retardant, strong, and tough epoxy biocomposites. ACS Sustainable Chemistry & Engineering 9(40):13595−605

doi: 10.1021/acssuschemeng.1c04718
[54]

Paul B, Mahmud-Ali A, Lenninger M, Eberle S, Bernt I, et al. 2022. Silica incorporated cellulose fibres as green concept for textiles with reduced flammability. Polymer Degradation and Stability 195:109808

doi: 10.1016/j.polymdegradstab.2021.109808
[55]

Zhang Q, Liu X, Ren Y, Li Y. 2022. Phosphorated cellulose as a cellulose-based filler for developing continuous fire resistant lyocell fibers. Journal of Cleaner Production 368:133242

doi: 10.1016/j.jclepro.2022.133242
[56]

Yang Z, Li H, Niu G, Wang J, Zhu D. 2021. Poly(vinylalcohol)/chitosan-based high-strength, fire-retardant and smoke-suppressant composite aerogels incorporating aluminum species via freeze drying. Composites Part B: Engineering 219:108919

doi: 10.1016/j.compositesb.2021.108919
[57]

Wang Y, Ma L, Wang H, Cheng C, Yin X, et al. 2023. Fabrication of a flame retardant, strong mechanical toughness and antimicrobial polylactic acid by chitosan Schiff base/ammonium polyphosphate. Polymer Degradation and Stability 216:110492

doi: 10.1016/j.polymdegradstab.2023.110492
[58]

Yang TT, Guan JP, Tang RC, Chen G. 2018. Condensed tannin from Dioscorea cirrhosa tuber as an eco-friendly and durable flame retardant for silk textile. Industrial Crops and Products 115:16−25

doi: 10.1016/j.indcrop.2018.02.018
[59]

Zhang AN, Liu BW, Zhao HB, Wang YZ. 2022. Eco-friendly and durable flame-retardant coating for cotton fabrics based on dynamic coordination of Ca2+-tannin acid. Progress in Organic Coatings 170:106964

doi: 10.1016/j.porgcoat.2022.106964
[60]

Liu Z, Song S, Dong L, Guo J, Wang J, et al. 2023. Bio-based phytic acid and urea interfacial layer by layer assembly for flame-retardant cotton. Polymer Degradation and Stability 216:110479

doi: 10.1016/j.polymdegradstab.2023.110479
[61]

Cheng XW, Wang ZY, Guan JP, Zhao LP, Yang HJ. 2022. In-situ fabrication of a sustainable, synergistic and durable flame-retardant coating for phytic acid modified silk fabric. Journal of the Taiwan Institute of Chemical Engineers 139:104537

doi: 10.1016/j.jtice.2022.104537
[62]

Cheng XW, Song JY, Dong S, Guan JP. 2023. Construction of a sustainable, reactive and phytate-based intumescent flame-retardant for silk textile. Polymer Degradation and Stability 211:110339

doi: 10.1016/j.polymdegradstab.2023.110339
[63]

Liu L, Shi B, Zhang A, Xue Y, Zhang J, et al. 2022. A polyphosphoramide-grafted lignin enabled thermostable and fire-retardant polylactide with preserved mechanical properties. Composites Part A: Applied Science and Manufacturing 160:107028

doi: 10.1016/j.compositesa.2022.107028
[64]

Mandlekar N, Cayla A, Rault F, Giraud S, Salaün F, et al. 2017. Intumescent formulations based on lignin and phosphinates for the bio-based textiles. IOP Conference Series: Materials Science and Engineering 254:052004

doi: 10.1088/1757-899x/254/5/052004
[65]

Zhou Y, Tang RC, Xing T, Guan JP, Shen ZH, et al. 2019. Flavonoids-metal salts combination: A facile and efficient route for enhancing the flame retardancy of silk. Industrial Crops and Products 130:580−591

doi: 10.1016/j.indcrop.2019.01.020
[66]

Qian W, Li X, Zhou J, Liu Y, Wu Z. 2019. High synergistic effects of natural-based tea saponin in intumescent flame-retardant coatings for enhancement of flame retardancy and pyrolysis performance. Progress in Organic Coatings 127:408−18

doi: 10.1016/j.porgcoat.2018.10.031
[67]

Qian W, Li XZ, Wu ZP, Liu YX, Fang CC, et al. 2015. Formulation of intumescent flame-retardant coatings containing natural-based tea saponin. Journal of Agricultural and Food Chemistry 63(10):2782−88

doi: 10.1021/jf505898d
[68]

Attia NF, Ahmed HE, El Ebissy AA, El Ashery SEA. 2022. Green and novel approach for enhancing flame retardancy, UV protection and mechanical properties of fabrics utilized in historical textile fabrics conservation. Progress in Organic Coatings 166:106822

doi: 10.1016/j.porgcoat.2022.106822
[69]

Attia NF, Mousa M. 2017. Synthesis of smart coating for furniture textile and their flammability and hydrophobic properties. Progress in Organic Coatings 110:204−9

doi: 10.1016/j.porgcoat.2017.04.035
[70]

Cheng XW, Guan JP, Yang XH, Tang RC. 2017. Improvement of flame retardancy of silk fabric by bio-based phytic acid, nano-TiO2, and polycarboxylic acid. Progress in Organic Coatings 112:18−26

doi: 10.1016/j.porgcoat.2017.06.025
[71]

Cayla A, Rault F, Giraud S, Salaün F, Fierro V, et al. 2016. PLA with intumescent system containing lignin and ammonium polyphosphate for flame retardant textile. Polymers 8(9):331

doi: 10.3390/polym8090331
[72]

Du Y, Zhao G, Shi G, Wang Y, Li W, et al. 2022. Effect of crosslink structure on mechanical properties, thermal stability and flame retardancy of natural flavonoid based epoxy resins. European Polymer Journal 162:110898

doi: 10.1016/j.eurpolymj.2021.110898
[73]

Maqsood M, Seide G. 2020. Biodegradable Flame Retardants for Biodegradable Polymer. Biomolecules 10(7):1038

doi: 10.3390/biom10071038