Abhilash PC, Jamil S, Singh N. 2009. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnology Advances 27:474−88

doi: 10.1016/j.biotechadv.2009.04.002

Ai H, Cao Y, Jain A, Wang XW, Hu Z, et al. 2020. The ferroxidase LPR5 functions in the maintenance of phosphate homeostasis and is required for normal growth and development of rice. Journal of Experimental Botany 71:4828−42

doi: 10.1093/jxb/eraa211

Alagić SČ, Maluckov BS, Radojičić VB. 2015. How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review Clean Technologies and Environmental Policy 17:597−614

doi: 10.1007/s10098-014-0840-6

Barber JL, Thomas GO, Kerstiens G, Jones KC. 2004. Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs. Environmental Pollution 128:99−138

doi: 10.1016/j.envpol.2003.08.024

Bradstreet RB. 1954. Determination of nitro nitrogen by Kjeldahl Method. Analytical Chemistry 26(1):235−36

doi: 10.1021/ac60085a044

Cao Y, Ai H, Jain A, Wu X, Zhang L, et al. 2016. Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice. BMC Plant Biology 16:210

doi: 10.1186/s12870-016-0853-x

Gao Y, Zhu L. 2004. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere 55:1169−78

doi: 10.1016/j.chemosphere.2004.01.037

Hamdi H, Benzarti S, Manusadžianas L, Aoyama I, Jedidi N. 2007. Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biology and Biochemistry 39:1926−35

doi: 10.1016/j.soilbio.2007.02.008

Jiao XC, Xu FL, Dawson R, Chen SH, Tao S. 2007. Adsorption and absorption of polycyclic aromatic hydrocarbons to rice roots. Environmental pollution 148:230−35

doi: 10.1016/j.envpol.2006.10.025

Kang F, Chen D, Gao Y, Zhang Y. 2010. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.). BMC Plant Biology 10:210

doi: 10.1186/1471-2229-10-210

Kästner M, Breuer-Jammali M, Mahro B. 1998. Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Applied and Environmental Microbiology 64(1):359−62

doi: 10.1128/AEM.64.1.359-362.1998

Kummerová M, Kmentová E. 2004. Photoinduced toxicity of fluoranthene on germination and early development of plant seedling. Chemosphere 56:387−93

doi: 10.1016/j.chemosphere.2004.01.007

Kummerová M, Zezulka Š, Babula P, Váňová L. 2013. Root response in Pisum sativum and Zea mays under fluoranthene stress: morphological and anatomical traits. Chemosphere 90:665−73

doi: 10.1016/j.chemosphere.2012.09.047

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ Method. Methods 25:402−8

doi: 10.1006/meth.2001.1262

Marschner H. 1995. Mineral Nutrition of Higher Plants. London, San Diego: Academic Press.

Raghothama KG. 1999. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology 50:665−93

doi: 10.1146/annurev.arplant.50.1.665

Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos T. 2006. Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell and Environment 29(1):115−25

doi: 10.1111/j.1365-3040.2005.01405.x

Shen Y, Gu R, Sheng Y, Zeng N, Zhan X. 2020. Acropetal translocation of phenanthrene in wheat seedlings: Xylem or phloem pathway? Environmental Pollution 260:114055

doi: 10.1016/j.envpol.2020.114055

Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, et al. 2007. Root tip contact with low-phosphate media reprograms plant root architecture. Nature Genetics 39:792−96

doi: 10.1038/ng2041

Ticconi CA, Delatorre CA, Lahner B, Salt DE, Abel S. 2004. Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. The Plant Journal 37(6):801−14

doi: 10.1111/j.1365-313X.2004.02005.x

Ticconi CA, Lucero RD, Sakhonwasee S, Adamson AW, Creff A, et al. 2009. ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability. Proceedings of the National Academy of Sciences of the United States of America 106(33):14174−79

doi: 10.1073/pnas.0901778106

Váňová L, Kummerová M, Klemš M, Zezulka Š. 2009. Fluoranthene influences endogenous abscisic acid level and primary photosynthetic processes in pea (Pisum sativum L.) plants in vitro. Plant Growth Regulation 57:39−47

doi: 10.1007/s10725-008-9318-z

Wang X, Jain A, Huang X, Lan X, Xu L, et al. 2021. Reducing phenanthrene uptake and translocation, and accumulation in the seeds by overexpressing OsNRT2.3b in rice. Science of the Total Environment 761:143690

doi: 10.1016/j.scitotenv.2020.143690

Wild E, Dent J, Thomas GO, Jones KC. 2005. Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environmental Science & Technology 139(10):3695−702

doi: 10.1021/es048136a

Wu F, Tian K, Wang J, Bao H, Luo W, et al. 2019. Accumulation and translocation of phenanthrene, anthracene and pyrene in winter wheat affected by soil water content. Ecotoxicology and Environmental Safety 183:109567

doi: 10.1016/j.ecoenv.2019.109567

Wu N, Huang H, Zhang S, Zhu Y, Christie P, et al. 2009. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus. Environmental pollution 157:1613−18

doi: 10.1016/j.envpol.2008.12.022

Xu G, Fan X, Miller AJ. 2012. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology 63:153−82

doi: 10.1146/annurev-arplant-042811-105532

Yang Q, Lu S, Wang H, Li J, Shen Y. 2016. Interaction of uptake and acropetal translocation between phenanthrene and phosphate in wheat roots. Asian Journal of Ecotoxicology 11(3):219−225

Zhan X, Yuan J, Yue L, Xu G, Hu B, et al. 2015. Response of uptake and translocation of phenanthrene to nitrogen form in lettuce and wheat seedlings. Environmental Science and Pollution Research 22:6280−7

doi: 10.1007/s11356-014-3834-3