[1] |
Wang C, Ma BL, Yan X, Han J, Guo Y, et al. 2009. Yields of alfalfa varieties with different fall-dormancy levels in a temperate environment. Agronomy Journal 101:1146−52 doi: 10.2134/agronj2009.0026 |
[2] |
Li Y, Wan L, Bi S, Wan X, Li Z, et al. 2017. Identification of drought-responsive microRNAs from roots and leaves of alfalfa by high-throughput sequencing. Genes 8:119 doi: 10.3390/genes8040119 |
[3] |
O'Rourke JA, Fu F, Bucciarelli B, Yang SS, Samac DA, et al. 2015. The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies. BMC Genomics 16:502 doi: 10.1186/s12864-015-1718-7 |
[4] |
Long R, Zhang F, Zhang Z, Li M, Chen L, et al. 2022. Genome assembly of alfalfa cultivar zhongmu-4 and identification of SNPs associated with agronomic traits. Genomics, Proteomics & Bioinformatics 20:14−28 doi: 10.1016/j.gpb.2022.01.002 |
[5] |
Chen H, Zeng Y, Yang Y, Huang L, Tang B, et al. 2020. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communication 11:2494 doi: 10.1038/s41467-020-16338-x |
[6] |
Shen C, Du H, Chen Z, Lu H, Zhu F, et al. 2020. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Molecular Plant 13:1250−61 doi: 10.1016/j.molp.2020.07.003 |
[7] |
Chao Y, Yuan J, Guo T, Xu L, Mu Z, et al. 2019. Analysis of transcripts and splice isoforms in Medicago sativa L. by single-molecule long-read sequencing. Plant Molecular Biology 99:219−35 doi: 10.1007/s11103-018-0813-y |
[8] |
Wan L, Li Y, Li S, Li X. 2022. Transcriptomic profiling revealed genes involved in response to drought stress in alfalfa. Journal of Plant Growth Regulation 41:92−112 doi: 10.1007/s00344-020-10287-x |
[9] |
Ng SY, Lin L, Soh BS, Stanton LW. 2013. Long noncoding RNAs in development and disease of the central nervous system. Trends in Genetics 29:461−68 doi: 10.1016/j.tig.2013.03.002 |
[10] |
Song X, Sun L, Luo H, Ma Q, Zhao Y, et al. 2016. Genome-wide identification and characterization of long non-coding RNAs from mulberry (Morus notabilis) RNA-seq data. Genes 7:11 doi: 10.3390/genes7030011 |
[11] |
Grote P, Wittler L, Hendrix D, Koch F, Währisch S, et al. 2013. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Developmental Cell 24:206−14 doi: 10.1016/j.devcel.2012.12.012 |
[12] |
Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. 2008. Specific expression of long noncoding RNAs in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America 105:716−21 doi: 10.1073/pnas.0706729105 |
[13] |
Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, et al. 2012. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure evolution and expression. Genome Research 22:1775−89 doi: 10.1101/gr.132159.111 |
[14] |
Swiezewski S, Liu F, Magusin A, Dean C. 2009. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462:799−802 doi: 10.1038/nature08618 |
[15] |
Bi X. 2012. Functions of chromatin remodeling factors in heterochromatin formation and maintenance. Science China Life Science 55:89−96 doi: 10.1007/s11427-012-4267-1 |
[16] |
Zhou H, Liu Q, Li J, Jiang D, Zhou L, et al. 2012. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Research 22:649−60 doi: 10.1038/cr.2012.28 |
[17] |
Camblong J, Beyrouthy N, Guffanti E, Schlaepfer G, Steinmetz LM, et al. 2009. Trans-acting antisense RNAs mediate transcriptional gene cosuppression in S. cerevisiae. Genes 23:1534−45 doi: 10.1101/gad.522509 |
[18] |
Shin H, Shin HS, Chen R, Harrison MJ. 2006. Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. The Plant Journal 45:712−26 doi: 10.1111/j.1365-313X.2005.02629.x |
[19] |
Pauli A, Norris ML, Valen E, Chew GL, Gagnon JA, et al. 2014. Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science 343:1248636 doi: 10.1126/science.1248636 |
[20] |
Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, et al. 2015. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160:595−606 doi: 10.1016/j.cell.2015.01.009 |
[21] |
Nelson BR, Makarewich CA, Anderson DM, Winders BR, Troupes CD, et al. 2016. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 351:271−75 doi: 10.1126/science.aad4076 |
[22] |
Crespi MD, Jurkevitch E, Poiret M, d'Aubenton-Carafa Y, Petrovics G, et al. 1994. enod40 a gene expressed during nodule organogenesis codes for a non-translatable RNA involved in plant growth. The EMBO Journal 13:5099−112 doi: 10.1002/j.1460-2075.1994.tb06839.x |
[23] |
Mccarthy A. 2010. Third generation DNA sequencing: pacific biosciences' single molecule real time technology. Chemistry & Biology 17:675−76 doi: 10.1016/j.chembiol.2010.07.004 |
[24] |
Li W, Godzik A. 2006. CD-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658−59 doi: 10.1093/bioinformatics/btl158 |
[25] |
Kang Y, Yang D, Kong L, Hou M, Meng Y, et al. 2017. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Research 45:W12−W16 doi: 10.1093/nar/gkx428 |
[26] |
Li A, Zhang J, Zhou Z. 2014. PLEK: a tool for predicting long non-coding rnas and messenger RNAs based on an improved k-mer scheme. BMC Bioinformatics 15:311 doi: 10.1186/1471-2105-15-311 |
[27] |
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009 |
[28] |
Liu C, Bai B, Skogerbø G, Cai L, Deng W, et al. 2005. NONCODE: an integrated knowledge database of non-coding RNAs. Nucleic Acids Research 33:D112−D115 doi: 10.1093/nar/gki041 |
[29] |
Wang T, Liu M, Zhao M, Chen R, Zhang W. 2015. Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC Plant Biology 15:131 doi: 10.1186/s12870-015-0530-5 |
[30] |
Lavorgna G, Guffanti A, Borsani G, Ballabio A, Boncinelli E. 1999. Targetfinder: searching annotated sequence databases for target genes of transcription factors. Bioinformatics 15:172−73 doi: 10.1093/bioinformatics/15.2.172 |
[31] |
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498−504 doi: 10.1101/gr.1239303 |
[32] |
Rombel IT, Sykes KF, Rayner S, Johnston SA. 2002. ORF-FINDER: a vector for high-throughput gene identification. Gene 282:33−41 doi: 10.1016/S0378-1119(01)00819-8 |
[33] |
Zhu M, Gribskov M. 2019. MiPepid: MicroPeptide identification tool using machine learning. BMC Bioinformatics 20:559 doi: 10.1186/s12859-019-3033-9 |
[34] |
Gao S, Tian X, Chang H, Sun Y, Wu Z, et al. 2018. Two novel lncRNAs discovered in human mitochondrial DNA using PacBio full-length transcriptome data. Mitochondrion 38:41−47 doi: 10.1016/j.mito.2017.08.002 |
[35] |
Song F, He C, Yan X, Bai F, Pan Z. 2018. Small RNA profiling reveals involvement of microrna-mediated gene regulation in response to mycorrhizal symbiosis in Poncirus trifoliata L. Raf. Tree Genetics & Genomes 14:42 doi: 10.1007/s11295-018-1253-1 |
[36] |
Lauressergues D, Delaux PM, Formey D, Lelandais-Brière C, Fort S, et al. 2012. The microRNA mir171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2. The Plant Journal 72:512−22 doi: 10.1111/j.1365-313X.2012.05099.x |
[37] |
Windels D, Vazquez F. 2011. Mir393: integrator of environmental cues in auxin signaling? Plant Signaling & Behavior 6:1672−75 doi: 10.4161/psb.6.11.17900 |
[38] |
Zhu C, Ding Y, Liu H. 2011. Mir398 and plant stress responses. Physiologia Plantarum 143:1−9 doi: 10.1111/j.1399-3054.2011.01477.x |