[1]

Hansjakob A, Bischof S, Bringmann G, Riederer M, Hildebrandt U. 2010. Very-long-chain aldehydes promote in vitro prepenetration processes of Blumeria graminis in a dose- and chain length-dependent manner. New Phytologist 188:1039−54

doi: 10.1111/j.1469-8137.2010.03419.x
[2]

Castillo L, Diaz M, González-Coloma A, González A, Alonso-Paz E, et al. 2010. Clytostoma callistegioides (Bignoniaceae) wax extract with activity on aphid settling. Phytochemistry 71:2052−57

doi: 10.1016/j.phytochem.2010.08.016
[3]

Schreiber L. 2010. Transport barriers made of cutin, suberin and associated waxes. Trends in Plant Science 15:546−53

doi: 10.1016/j.tplants.2010.06.004
[4]

Buda GJ, Barnes WJ, Fich EA, Park S, Yeats TH, et al. 2013. An ATP binding cassette transporter is required for cuticular wax deposition and desiccation tolerance in the moss Physcomitrella patens. The Plant Cell 25:4000−13

doi: 10.1105/tpc.113.117648
[5]

Pighin JA, Zheng H, Balakshin LJ, Goodman IP, Western TL, et al. 2004. Plant cuticular lipid export requires an ABC transporter. Science 306:702−4

doi: 10.1126/science.1102
[6]

Panikashvili D, Shi JX, Schreiber L, Aharoni A. 2011. The Arabidopsis ABCG13 transporter is required for flower cuticle secretion and patterning of the petal epidermis. New Phytologist 190:113−24

doi: 10.1111/j.1469-8137.2010.03608.x
[7]

Zhao G, Shi J, Liang W, Xue F, Luo Q, et al. 2015. Two ATP binding cassette G transporters, rice ATP binding cassette G26 and ATP binding cassette G15, collaboratively regulate rice male reproduction. Plant Physiology 169:2064−79

doi: 10.1104/pp.15.00262
[8]

Bessire M, Borel S, Fabre G, Carraça L, Efremova N, et al. 2011. A member of the PLEIOTROPIC DRUG RESISTANCE family of ATP binding cassette transporters is required for the formation of a functional cuticle in Arabidopsis. The Plant Cell 23:1958−70

doi: 10.1105/tpc.111.083121
[9]

Yang Z, Zhang T, Lang T, Li G, Chen G, et al. 2013. Transcriptome comparative profiling of barley eibi1 mutant reveals pleiotropic effects of HvABCG31 gene on cuticle biogenesis and stress responsive pathways. International Journal of Molecular Sciences 14:20478−91

doi: 10.3390/ijms141020478
[10]

Li L, Li D, Liu S, Ma X, Dietrich CR, et al. 2013. The maize glossy13 gene, cloned via BSR-Seq and Seq-Walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes. PLoS ONE 8:e82333

doi: 10.1371/journal.pone.0082333
[11]

Zhang C, Wang Y, Hu X, Zhang Y, Wang G, et al. 2020. An apple AP2/EREBP-type transcription factor, MdWRI4, enhances plant resistance to abiotic stress by increasing cuticular wax load. Environmental and Experimental Botany 180:104206

doi: 10.1016/j.envexpbot.2020.104206
[12]

de Campos Vidal B, Mello MLS. 2019. Toluidine blue staining for cell and tissue biology applications. Acta Histochemica 121:101−12

doi: 10.1016/j.acthis.2018.11.005
[13]

Zhang Y, Zhang C, Wang G, Wang Y, Qi C, et al. 2019. Apple AP2/EREBP transcription factor MdSHINE2 confers drought resistance by regulating wax biosynthesis. Planta 249:1627−43

doi: 10.1007/s00425-019-03115-4
[14]

Pham TCT, Angers P, Ratti C. 2018. Extraction of wax-like materials from cereals. The Canadian Journal of Chemical Engineering 96:2273−81

doi: 10.1002/cjce.23260
[15]

Ardenghi N, Mulch A, Pross J, Niedermeyer EM. 2017. Leaf wax n-alkane extraction: an optimised procedure. Organic Geochemistry 113:283−92

doi: 10.1016/j.orggeochem.2017.08.012
[16]

Li J, Zhang C, Zhang Y, Gao H, Wang H, et al. 2022. An apple long-chain acyl-CoA synthase, MdLACS1, enhances biotic and abiotic stress resistance in plants. Plant Physiology and Biochemistry 189:115−25

doi: 10.1016/j.plaphy.2022.08.021
[17]

Lü S, Song T, Kosma DK, Parsons EP, Rowland O, et al. 2009. Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. The Plant Journal 59:553−64

doi: 10.1111/j.1365-313X.2009.03892.x
[18]

Qi C, Zhao X, Jiang H, Zheng P, Liu H, et al. 2019. Isolation and functional identification of an apple MdCER1 gene. Plant Cell, Tissue and Organ Culture (PCTOC) 136:1−13

doi: 10.1007/s11240-018-1504-8
[19]

Zhang C, Mao K, Zhou L, Wang G, Zhang Y, et al. 2018. Genome-wide identification and characterization of apple long-chain Acyl-CoA synthetases and expression analysis under different stresses. Plant Physiology and Biochemistry 132:320−32

doi: 10.1016/j.plaphy.2018.09.004
[20]

An J, Wang X, Yao J, Ren Y, You C, et al. 2017. Apple MdMYC2 reduces aluminum stress tolerance by directly regulating MdERF3 gene. Plant and Soil 418:255−66

doi: 10.1007/s11104-017-3297-7
[21]

Lian X, Gao H, Jiang H, Liu C, Li Y. 2021. MdKCS2 increased plant drought resistance by regulating wax biosynthesis. Plant Cell Reports 40:2357−68

doi: 10.1007/s00299-021-02776-4
[22]

Zhang C, Hu X, Zhang Y, Liu Y, Wang G, et al. 2020. An apple long-chain acyl-CoA synthetase 2gene enhances plant resistance to abiotic stress by regulating the accumulation of cuticular wax. Tree Physiology 40:1450−65

doi: 10.1093/treephys/tpaa079
[23]

Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, et al. 2010. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proceedings of the National Academy of Sciences of the United States of America 107:2355−60

doi: 10.1073/pnas.0909222107
[24]

Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, et al. 2010. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proceedings of the National Academy of Sciences of the United States of America 107:2361−66

doi: 10.1073/pnas.09125161
[25]

Li H, Li C, Sun D, Yang Z. 2024. OsPDR20 is an ABCG metal transporter regulating cadmium accumulation in rice. Journal of Environmental Sciences 136:21−34

doi: 10.1016/j.jes.2022.09.021
[26]

Zhang H, Jing W, Zheng J, Jin Y, Wu D, et al. 2020. The ATP-binding cassette transporter OsPDR1 regulates plant growth and pathogen resistance by affecting jasmonates biosynthesis in rice. Plant Science 298:110582

doi: 10.1016/j.plantsci.2020.110582
[27]

Yang X, Zhao H, Kosma DK, Tomasi P, Dyer JM, et al. 2017. The acyl desaturase CER17 is involved in producing wax unsaturated primary alcohols and cutin monomers. Plant Physiology 173:1109−24

doi: 10.1104/pp.16.01956
[28]

Zhang Y, You C, Li Y, Hao Y. 2020. Advances in biosynthesis, regulation, and function of apple cuticular wax. Frontiers in Plant Science 11:1165

doi: 10.3389/fpls.2020.01165
[29]

Gan L, Wang X, Cheng Z, Liu L, Wang J, et al. 2016. Wax crystal-sparse leaf 3 encoding a beta-ketoacyl-CoA reductase is involved in cuticular wax biosynthesis in rice. Plant Cell Reports 35:1687−98

doi: 10.1007/s00299-016-1983-1
[30]

McFarlane HE, Lee EK, Van Bezouwen LS, Ross B, Rosado A, et al. 2017. Multiscale structural analysis of plant ER-PM contact sites. Plant and Cell Physiology 58:478−84

doi: 10.1093/pcp/pcw224
[31]

Xue Y, Xiao S, Kim J, Lung SC, Chen L, et al. 2014. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation. Journal of Experimental Botany 65:5473−83

doi: 10.1093/jxb/eru304
[32]

Kunst L, Samuels AL. 2003. Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research 42:51−80

doi: 10.1016/S0163-7827(02)00045-0
[33]

Dhara A, Raichaudhuri A. 2021. ABCG transporter proteins with beneficial activity on plants. Phytochemistry 184:112663

doi: 10.1016/j.phytochem.2021.112663
[34]

McFarlane HE, Shin JJH, Bird DA, Samuels AL. 2010. Arabidopsis ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations. The Plant Cell 22:3066−75

doi: 10.1105/tpc.110.077974
[35]

Le Hir R, Sorin C, Chakraborti D, Moritz T, Schaller H, et al. 2013. ABCG9, ABCG11 and ABCG14 ABC transporters are required for vascular development in Arabidopsis. The Plant Journal 76:811−24

doi: 10.1111/tpj.12334
[36]

Elejalde-Palmett C, Martinez San Segundo I, Garroum I, Charrier L, De Bellis D, et al. 2021. ABCG transporters export cutin precursors for the formation of the plant cuticle. Current Biology 31:2111−2123.E9

doi: 10.1016/j.cub.2021.02.056
[37]

Lee EJ, Kim KY, Zhang J, Yamaoka Y, Gao P, et al. 2021. Arabidopsis seedling establishment under waterlogging requires ABCG5-mediated formation of a dense cuticle layer. New Phytologist 229:156−72

doi: 10.1111/nph.16816
[38]

Chen N, Song B, Tang S, He J, Zhou Y, et al. 2018. Overexpression of the ABC transporter gene TsABCG11 increases cuticle lipids and abiotic stress tolerance in Arabidopsis. Plant Biotechnology Reports 12:303−13

doi: 10.1007/s11816-018-0495-6
[39]

Raghavendra AS, Gonugunta VK, Christmann A, Grill E. 2010. ABA perception and signalling. Trends in Plant Science 15:395−401

doi: 10.1016/j.tplants.2010.04.006
[40]

Hetherington AM. 2001. Guard cell signaling. Cell 107:711−14

doi: 10.1016/S0092-8674(01)00606-7
[41]

Do THT, Martinoia E, Lee Y, Hwang JU. 2021. 2021 update on ATP-binding cassette (ABC) transporters: how they meet the needs of plants. Plant Physiology 187:1876−92

doi: 10.1093/plphys/kiab193
[42]

Gräfe K, Schmitt L. 2021. The ABC transporter G subfamily in Arabidopsis thaliana. Journal of Experimental Botany 72:92−106

doi: 10.1093/jxb/eraa260