[1] |
The Economist. 2023. The new geography of oil: Latin America's next petroleum boom. pp. 23−26. |
[2] |
Myers PE. 1997. Aboveground storage tanks. New York, NY: McGraw-Hill Education. |
[3] |
Santella N, Steinberg LJ, Sengul H. 2010. Petroleum and hazardous material releases from industrial facilities associated with hurricane Katrina. Risk Analysis 30(4):635−49 doi: 10.1111/j.1539-6924.2010.01390.x |
[4] |
Cruz AM, Krausmann E. 2013. Vulnerability of the oil and gas sector to climate change and extreme weather events. Climatic Change 121(1):41−53 doi: 10.1007/s10584-013-0891-4 |
[5] |
DeCola E. 2023. Exploring the Intersection between Oil Spill Risks, Preparedness, and Climate Change. 45th AMOP Technical Seminar on Environmental Contamination and Response, Canada, 2013. Canada: Environment and Climate Change Canada (ECCC). |
[6] |
Cauffman S, Phan L, Sadek F, Fritz W, Duthinh D, et al. 2006. Performance of Physical Structures in Hurricane Katrina and Hurricane Rita: A Reconnaissance Report. Technical Note. NIST TN 1476. National Institute of Standards and Technology, Gaithersburg, MD. |
[7] |
Godoy LA. 2007. Performance of storage tanks in oil facilities damaged by Hurricanes Katrina and Rita. Journal of Performance of Constructed Facilities 21(6):441−49 doi: 10.1061/(ASCE)0887-3828(2007)21:6(441) |
[8] |
Teng JG, Rotter JM. (Eds). 2004. Buckling of Thin Metal Shells. London: CRC Press. 520 pp. https://doi.org/10.1201/9781482295078 |
[9] |
Ansourian P. 2004. Cylindrical shells under non-uniform external pressure. In Buckling of Thin Metal Shells, eds. Teng JG, Rotter JM. London: CRC Press. https://doi.org/10.1201/9781482295078 |
[10] |
Rotter JM, Schmidt H. (Eds.) 2013. Buckling of Steel Shells: European Design Recommendations. 5th ed. Brussels: European Convention for Constructional Steelwork (ECCS). https://lib.ugent.be/catalog/rug01:002206396 |
[11] |
Godoy LA. 2016. Buckling of vertical oil storage steel tanks: Review of static buckling studies. Thin-Walled Structures 103:1−21 doi: 10.1016/j.tws.2016.01.026 |
[12] |
Gehl P, Desramaut N, Reveillere A, Modaressi H. 2014. Fragility functions of gas and oil networks. In SYNER-G: Typology Definition and Fragility Functions for Physical Elements at Seismic Risk, eds. Pitilakis K, Crowley H, Kaynia A. Vol. 27. Dordrecht: Springer. pp. 187−220. https://doi.org/10.1007/978-94-007-7872-6_7 |
[13] |
O'Rourke MJ, So P. 2000. Seismic fragility curves for on-grade steel tanks. Earthquake Spectra 16(4):801−15 doi: 10.1193/1.1586140 |
[14] |
Razzaghi MS, Eshghi S. 2008. Development of analytical fragility curves for cylindrical steel oil tanks. Proccedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12−17 October, 2008. www.iitk.ac.in/nicee/wcee/article/14_06-0017.PDF |
[15] |
Federal Emergency Management Agency (FEMA). 2022. Multi-hazard Loss Estimation Methodology. HAZUS – MH MR1 Technical Manual. Federal Emergency Management Agency, Washington, D.C. www.fema.gov/sites/default/files/2020-09/fema_hazus_flood-model_technical-manual_2.1.pdf |
[16] |
Pitilakis K, Crowley H, Kaynia AM. 2014. SYNER-G: typology definition and fragility functions for physical elements at seismic risk. Geotechnical, Geological and Earthquake Engineering. vol. 27. Dordrech: Springer. pp. 1−28. https://doi.org/10.1007/978-94-007-7872-6 |
[17] |
Bernier C, Padgett JE. 2018. Forensic investigation of aboveground storage tank failures during Hurricane Harvey using fragility models. Eighth Congress on Forensic Engineering. Austin, Texas, Reston, VA: American Society of Civil Engineers. pp. 975−85. https://doi.org/10.1061/9780784482018.094 |
[18] |
Kameshwar S, Padgett JE. 2018. Fragility and Resilience Indicators for Portfolio of Oil Storage Tanks Subjected to Hurricanes. Journal of Infrastructure Systems 24(2):04018003 doi: 10.1061/(ASCE)IS.1943-555X.0000418 |
[19] |
Bernier C, Elliott JR, Padgett JE, Kellerman F, Bedient PB. 2017. Evolution of social vulnerability and risks of chemical spills during storm surge along the Houston Ship Channel. Natural Hazards Review 18(7):04017013 doi: 10.1061/(asce)nh.1527-6996.0000252 |
[20] |
Virella JC, Portela G, Godoy LA. 2006. Toward an inventory and vulnerability of aboveground storage tanks in Puerto Rico. Fourth LACCEI International Latin American and Caribbean Conference for Engineering and Technology (LACCEI'2006), Mayaguez, Puerto Rico, 2006. www.laccei.org/LACCEI2006-PuertoRico/Papers%20-pdf/ENE057_Virella.pdf |
[21] |
American Petroleum Institute (API). 2013. Welded steel tanks for oil storage. API Standard 650. American Petroleum Institute, Washington D.C., USA. https://law.resource.org/pub/us/cfr/ibr/002/api.650.2007.pdf |
[22] |
Burgos CA, Batista-Abreu JC, Calabró HD, Jaca RC, Godoy LA. 2015. Buckling estimates for oil storage tanks: Effect of simplified modeling of the roof and wind girder. Thin-Walled Structures 91:29−37 doi: 10.1016/j.tws.2015.02.006 |
[23] |
Macdonald PA, Kwok KCS, Holmes JD. 1988. Wind loads on circular storage bins, silos and tanks: I. Point pressure measurements on isolated structures. Journal of Wind Engineering and Industrial Aerodynamics 31:165−88 doi: 10.1016/0167-6105(88)90003-7 |
[24] |
Yasunaga J, Koo C, Uematsu Y. 2012. Wind loads for designing cylindrical storage tanks part 1 Characteristics of wind pressure and force distributions. Journal of Wind Engineering 37(2):43−53 doi: 10.5359/jwe.37.43 |
[25] |
Uematsu Y, Koo C, Yasunaga J. 2014. Design wind force coefficients for open-topped oil storage tanks focusing on the wind-induced buckling. Journal of Wind Engineering and Industrial Aerodynamics 130:16−29 doi: 10.1016/j.jweia.2014.03.015 |
[26] |
Lin Y, Zhao Y. 2014. Wind loads on fixed-roof cylindrical tanks with very low aspect ratio. Wind and Structures 18(6):651−68 doi: 10.12989/was.2014.18.6.651 |
[27] |
Pasley H, Clark C. 2000. Computational fluid dynamics study of flow around floating-roof oil storage tanks. Journal of Wind Engineering and Industrial Aerodynamics 86(1):37−54 doi: 10.1016/S0167-6105(99)00138-5 |
[28] |
Maraveas C, Miamis K. 2013. Shell buckling evaluation of thin-walled steel tanks filled at low liquid level according to current design codes. Proc. Annual Stability Conference, St. Louis, Missouri, 2013. , Structural Stability Research Council. Red Hook, NY: Curran Associates. pp. 710−24. |
[29] |
Maraveas C, Balokas GA, Tsavdaridis KD. 2015. Numerical evaluation on shell buckling of empty thin-walled steel tanks under wind load according to current American and European design codes. Thin-Walled Structures 95:152−60 doi: 10.1016/j.tws.2015.07.007 |
[30] |
American Society of Civil Engineers Reston (ASCE). 2010. Minimum design loads for buildings and other structures, ASCE/SEI 7-16. Reston VA: American Society of Civil Engineers Reston. https://ascelibrary.org/doi/book/10.1061/9780784412916 |
[31] |
Uematsu Y, Yasunaga J. 2013. Wind loads on open-topped oil-storage tanks in various arrangements. Proceedings of the sixth European and African conference on wind engineering, Cambridge, UK, July 7−11, 2013. |
[32] |
Walpole RE, Myers RH, Myers SL, Ye K. 2013. Probability & Statistics for Engineers & Scientists. 9th Edition. India: Pearson. |
[33] |
Simulia/ABAQUS. 2006. Unified FEA. Dassault Systemes. v6, 13-1. Simulia. Rhode Island. USA. |
[34] |
Riks E. 1972. The application of Newton's method to the problem of elastic stability. Journal of Applied Mechanics 39:1060−65 doi: 10.1115/1.3422829 |
[35] |
Riks E. 1979. An incremental approach to the solution of snapping and buckling problems. International Journal of Solids and Structures 15:529−51 doi: 10.1016/0020-7683(79)90081-7 |
[36] |
Croll JG. 2006. Design analysis for buckling of tanks and silos. Journal of Structural Engineering 132(1):43−49 doi: 10.1061/(ASCE)0733-9445(2006)132:1(43) |
[37] |
Jaca RC, Godoy LA, Flores FG, Croll JGA. 2007. A reduced stiffness approach for the buckling of open cylindrical tanks under wind loads. Thin-Walled Structures 45(9):727−36 doi: 10.1016/j.tws.2007.07.001 |
[38] |
Sosa EM, Godoy LA. 2010. Challenges in the computation of lower-bound buckling loads for tanks under wind pressures. Thin-Walled Structures 48(12):935−45 doi: 10.1016/j.tws.2010.06.004 |
[39] |
Jaca RC, Godoy LA, Croll JGA. 2011. Reduced stiffness buckling analysis of aboveground storage tanks with thickness changes. Advances in Structural Engineering 14(3):475−87 doi: 10.1260/1369-4332.14.3.475 |
[40] |
Godoy LA, Jaca RC, Sosa EM, Flores FG. 2015. A penalty approach to obtain lower bound buckling loads for imperfection-sensitive shells. Thin-Walled Structures 95:183−95 doi: 10.1016/j.tws.2015.07.005 |
[41] |
Muñoz AM, Jaca RC, Bramardi S, Godoy LA. 2023. Evaluation of fragility curves of oil storage tanks with conical roof under wind. Mecánica Computacional 40:231−40(in Spanish |
[42] |
Schultz MT, Gouldby BP, Simm JD, Wibowo JL. 2010. Beyond the factor of safety: Developing fragility curves to characterize system reliability. Report ERDC SR-10-1. US Army Corps of Engineers: Engineering Research and Development Center, Washington DC. https://hdl.handle.net/11681/4766 |
[43] |
Rossetto T, D'Ayala D, Ioannou I, Meslem A. 2014. Evaluation of existing fragility curves. In SYNER-G: Typology Definition and Fragility Functions for Physical Elements at Seismic Risk, eds. Pitilakis K, Crowley H, Kaynia A. vol 27. Dordrecht: Springer. pp. 47−93. https://doi.org/10.1007/978-94-007-7872-6_3 |
[44] |
GGodoy LA. 2023. Una revisión de la evaluación de vulnerabilidad de tanques de almacenamiento de petróleo - Parte 1: Conceptos generales, Parte 2: Curvas de fragilidad. Revista Sul-Americana de Engenharia Estrutural. In Press. Also: Fragilidad de la infraestructura para el almacenamiento de petróleo y sus derivados. Technical Report. FCEFyN, Universidad Nacional de Córdoba, Argentina, 2020. |
[45] |
CIRSOC 102. 2005. Wind Loads on Constructions. Buenos Aires: Research Center for National Standards of Civil Constructions. (In Spanish). Buenos Aires: Centro de Investigación de los Reglamentos Nacionales de Seguridad para Obras Civiles. http://contenidos.inpres.gob.ar/docs/Reglamentos/CIRSOC-102-Reglamento.pdf |
[46] |
Viana FAC, Gogu C, Haftka RT. 2010. Making the most out of surrogate models: Tricks of the trade. Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 1: 36th Design Automation Conference, Montreal, Quebec, Canada, August 15–18, 2010. US: The American Society of Mechanical Engineers (ASME). pp. 587–98. https://doi.org/10.1115/DETC2010-28813 |
[47] |
IAPG. 2000. The ABC of Oil and Gas. Buenos Aires: Argentinian Institute of Oil and Gas (IAPG). (In Spanish). www.iapg.org.ar |