[1]

Hu X, Wang Y, Zhang L, Xu M. 2020. Construction of self-assembled polyelectrolyte complex hydrogel based on oppositely charged polysaccharides for sustained delivery of green tea polyphenols. Food Chemistry 306:125632

doi: 10.1016/j.foodchem.2019.125632
[2]

Ahmed EM. 2015. Hydrogel: preparation, characterization, and applications: a review. Journal of Advanced Research 6(2):105−21

doi: 10.1016/j.jare.2013.07.006
[3]

Komaiko J, McClements DJ. 2015. Food-grade nanoemulsion filled hydrogels formed by spontaneous emulsification and gelation: optical properties, rheology, and stability. Food Hydrocolloids 46:67−75

doi: 10.1016/j.foodhyd.2014.12.031
[4]

Liu X, Tan Y, Yuan F. 2019. Research progress of controlled release of food flavor substances in hydrogels. China Condiment 44(3):175−79

[5]

Wang M, Doi T, Hu X, McClements DJ. 2019. Influence of ionic strength on the thermostability and flavor (allyl methyl disulfide) release profiles of calcium alginate microgels. Food Hydrocolloids 93:24−33

doi: 10.1016/j.foodhyd.2019.02.013
[6]

Chen B, Hu H, Wang Q, Liu H. 2020. Research progress of properties and microstructure of protein-polysaccharide complex gels. Journal of Chinese Institute of Food Science and Technology 20(11):319−27

doi: 10.16429/j.1009-7848.2020.11.036
[7]

Campo VL, Kawano DF, Dilson BS, Carvalho I. 2009. Carrageenans: Biological properties, chemical modifications and structural analysis-a review. Carbohydrate Polymers 77(2):167−80

doi: 10.1016/j.carbpol.2009.01.020
[8]

Stone AK, Nickerson MT. 2012. Formation and functionality of whey protein isolate–(kappa-, iota-, and lambda-type) carrageenan electrostatic complexes. Food Hydrocolloids 27(2):271−77

doi: 10.1016/j.foodhyd.2011.08.006
[9]

Liu S, Li L. 2016. Recoverable and self-healing double network hydrogel based on κ-carrageenan. ACS Applied Materials & Interfaces 8(43):29749−58

doi: 10.1021/acsami.6b11363
[10]

Cong HP, Wang P, Yu SH. 2013. Stretchable and self-healing graphene oxide-polymer composite hydrogels: a dual-network design. Chemistry of Materials 25(16):3357−62

doi: 10.1021/cm401919c
[11]

Mohammadinejad R, Maleki H, Larrañeta E, Fajardo AR, Nik AB, et al. 2019. Status and future scope of plant-based green hydrogels in biomedical engineering. Applied Materials Today 16:213−46

doi: 10.1016/j.apmt.2019.04.010
[12]

He Q, Huang Y, Wang S. 2018. Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels. Advanced Functional Materials 28:1705069

doi: 10.1002/adfm.201705069
[13]

Xu L, Wang C, Cui Y, Li A, Qiao Y, et al. 2019. Conjoined-network rendered stiff and tough hydrogels from biogenic molecules. Science Advances 5:3442

doi: 10.1126/sciadv.aau3442
[14]

Su D, Yao M, Liu J, Zhong Y, Chen X, et al. 2017. Enhancing mechanical properties of silk fibroin hydrogel through restricting the growth of β-sheet domains. ACS Applied Materials & Interfaces 9:17489−98

doi: 10.1021/acsami.7b04623
[15]

He Q, Huang D, Yang J, Huang Y, Wang S. 2019. Dual cross-link networks to preserve physical interactions induced by soaking methods: developing a strong and biocompatible protein-based hydrogel. ACS Applied Biomaterials 2:3352−61

doi: 10.1021/acsabm.9b00357
[16]

Zhou D, Chen F, Wang J, Li T, Li B, et al. 2018. Tough protein organohydrogels. Journal of Materials Chemistry B 6(45):7366−72

doi: 10.1039/C8TB02236D
[17]

Gu C, Wu RF, Yu CY, Qi KJ, Wu C, et al. 2021. Spatio-temporally expressed sorbitol transporters cooperatively regulate sorbitol accumulation in pear fruit. Plant Science 303:110787

doi: 10.1016/j.plantsci.2020.110787
[18]

Khan M, Shah LA, Rahman TU, Yoo HM, Ye D, et al. 2023. Cellulose nanocrystals boosted hydrophobic association in dual network polymer hydrogels as advanced flexible strain sensor for human motion detection. Journal of the Mechanical Behavior of Biomedical Materials 138:105610

doi: 10.1016/j.jmbbm.2022.105610
[19]

Khan M, Shah LA, Rahman TR, Yoo HM, Ye D, et al. 2022. Hydrophobically Associated Functionalized CNT-Reinforced Double-Network Hydrogels as Advanced Flexible Strain Sensors. ACS Applied Polymer Materials 4(10):7397−407

doi: 10.1021/acsapm.2c01158
[20]

Hou Y, Liu H, Zhu DS, Liu J, Zhang CL, et al. 2022. Influence of soybean dietary fiber on the properties of konjac glucomannan/κ-Carrageenan corn oil composite gel. Food Hydrocolloids 129:107602

doi: 10.1016/j.foodhyd.2022.107602
[21]

Yang J, Gu Z, Cheng L, Li Z, Li C, et al. 2021. Preparation and stability mechanisms of double emulsions stabilized by gelatinized native starch. Carbohydrate Polymers 262:117926

doi: 10.1016/j.carbpol.2021.117926
[22]

Lu Y, Ma Y, Zhang Y, Gao Y, Mao L. 2022. Facile synthesis of zein-based emulsion gels with adjustable texture, rheology and stability by adding β-carotene in different phases. Food Hydrocolloids 124:107178

doi: 10.1016/j.foodhyd.2021.107178
[23]

Khan M, Shah LA, Ara L, Ullah R, Yoo HM. 2023. Micelle-micelle cross-linked highly stretchable conductive hydrogels for potential applications of strain and electronic skin sensors. Chemistry of Materials 35(14):5582−92

doi: 10.1021/acs.chemmater.3c01092
[24]

Li DQ, Wang SY, Meng YJ, Guo ZW, Cheng MM, et al. 2021. Fabrication of self-healing pectin/chitosan hybrid hydrogel via Diels-Alder reactions for drug delivery with high swelling property, pH-responsiveness, and cytocompatibility. Carbohydrate Polymers 268:118244

doi: 10.1016/j.carbpol.2021.118244
[25]

Li L, Zhao J, Sun Y, Yu F, Ma J. 2019. Ionically cross-linked sodium alginate/κ-carrageenan double-network gel beads with low-swelling, enhanced mechanical properties, and excellent adsorption performance. Chemical Engineering Journal 372:1091−103

doi: 10.1016/j.cej.2019.05.007
[26]

Yu HC, Zhang H, Ren KF, Ying ZM, Zhu FB, et al. 2018. Ultrathin kappa-carrageenan/chitosan hydrogel films with high toughness and anti-adhesion property. ACS Applied Materials & Interfaces 10(10):9002−9

doi: 10.1021/acsami.7b18343
[27]

Rahmawati M, Arief M, Satyantini WH. 2019. The effect of sorbitol addition on the characteristic of carrageenan edible film. IOP Conference Series: Earth and Environmental Science 236:012129

doi: 10.1088/1755-1315/236/1/012129
[28]

Gulyuz U, Okay O. 2014. Self-healing poly (acrylic acid) hydrogels with shape memory behavior of high mechanical strength. Macromolecules 47(19):6889−99

doi: 10.1021/ma5015116
[29]

Caldas AR, Faria MJ, Ribeiro A, Machado R, Gonçalves H, et al. 2021. Avobenzone-loaded and omega-3-enriched lipid formulations for production of UV blocking sunscreen gels and textiles. Journal of Molecular Liquids 342:116965

doi: 10.1016/j.molliq.2021.116965
[30]

Duman O, Polat TG, Diker CÖ, Tunç S. 2020. Agar/κ-carrageenan composite hydrogel adsorbent for the removal of Methylene Blue from water. International Journal of Biological Macromolecules 160:823−35

doi: 10.1016/j.ijbiomac.2020.05.191
[31]

Yazdani S, Khan M, Shahzad A, Shah LA, Ye D. 2023. Ionic conductive hydrogels formed through hydrophobic association for flexible strain sensing. Sensors and Actuators A: Physical 350:114148

doi: 10.1016/j.sna.2022.114148
[32]

Wang N, Tian J, Wang L, Song S, Ai C, et al. 2021. Fucoidan hydrogels induced by κ-carrageenan: Rheological, thermal and structural characterization. International Journal of Biological Macromolecules 191:514−20

doi: 10.1016/j.ijbiomac.2021.09.111
[33]

Farhadi N. 2017. Structural elucidation of a water-soluble polysaccharide isolated from Balangu shirazi (Lallemantia royleana) seeds. Food Hydrocolloids 72:263−70

doi: 10.1016/j.foodhyd.2017.05.028
[34]

Shao JH, Deng YM, Song L, Batur A, Liu DY. 2016. Investigation the effects of protein hydration states on the mobility water and fat in meat batters by LF-NMR technique. LWT - Food Science and Technology 66:1−6

doi: 10.1016/j.lwt.2015.10.008
[35]

Wu J, Lin W, Wang Z, Chen S, Chang Y. 2012. Investigation of the hydration of nonfouling material poly (sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir 28:7436−41

doi: 10.1021/la300394c
[36]

Wu Y, Fan D, Gao Y, Ma S, Yan B, et al. 2018. Study on water proton distribution and flow status of starch during the hydration process. International Journal of Biological Macromolecules 118:997−1003

doi: 10.1016/j.ijbiomac.2018.06.170
[37]

Panchal B, Truong T, Prakash S, Bansal N, Bhandari B. 2020. Effect of water content, droplet size, and gelation on fat phase transition and water mobility in water-in-milk fat emulsions. Food Chemistry 333:127538

doi: 10.1016/j.foodchem.2020.127538
[38]

Groß D, Zick K, Guthausen G. 2017. Recent MRI and diffusion studies of food structures. In Annual Reports on NMR Spectroscopy, ed. Webb GA. vol. 90. Academic Press. pp. 145−97. https://doi.org/10.1016/bs.arnmr.2016.09.001

[39]

Kozlowska J, Pauter K, Sionkowska A. 2018. Carrageenan-based hydrogels: Effect of sorbitol and glycerin on the stability, swelling and mechanical properties. Polymer Testing 67:7−11

doi: 10.1016/j.polymertesting.2018.02.016
[40]

Zhang Q, Gu L, Su Y, Chang C, Yang Y, et al. 2021. Development of soy protein isolate/κ-carrageenan composite hydrogels as a delivery system for hydrophilic compounds: Monascus yellow. International Journal of Biological Macromolecules 172:281−88

doi: 10.1016/j.ijbiomac.2021.01.044
[41]

Stenner R, Matubayasi N, Shimizu S. 2016. Gelation of carrageenan: Effects of sugars and polyols. Food Hydrocolloids 54:284−92

doi: 10.1016/j.foodhyd.2015.10.007
[42]

Ullah R, Shah LA, Khan M, Ara L. 2023. Guar gum reinforced conductive hydrogel for strain sensing and electronic devices. International Journal of Biological Macromolecules 246:125666

doi: 10.1016/j.ijbiomac.2023.125666
[43]

Khan M, Shah LA, Yazdani S, Yoo HM. 2023. 6-amino caproic acid regulated mechanical performance of ionically conductive ultra-stretchable hydrogels for flexible strain and epidermis sensors. Sensors and Actuators A: Physical 356:114363

doi: 10.1016/j.sna.2023.114363
[44]

Huang S, Hong X, Zhao M, Liu N, Liu H, et al. 2022. Nanocomposite hydrogels for biomedical applications. Bioengineering & Translational Medicine 7(3):e10315

doi: 10.1002/btm2.10315
[45]

Gao Y, Lei Y, Wu Y, Liang H, Li J, et al. 2021. Beeswax: A potential self-emulsifying agent for the construction of thermal-sensitive food w/o emulsion. Food Chemistry 349:129203

doi: 10.1016/j.foodchem.2021.129203
[46]

Liu B, Zhu S, Zhong F, Yokoyama W, Huang D, et al. 2021. Modulating storage stability of binary gel by adjusting the ratios of starch and kappa-carrageenan. Carbohydrate Polymers 268:118264

doi: 10.1016/j.carbpol.2021.118264
[47]

Huang M, Mao Y, Mao Y, Yang H. 2022. Xylitol and Maltitol Improve the Rheological Property of Kappa-Carrageenan. Foods 11(1):51

doi: 10.3390/foods11010051
[48]

Bai L, McClements DJ. 2016. Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids. Journal of Colloid and Interface Science 479:71−79

doi: 10.1016/j.jcis.2016.06.047
[49]

Sun Y, Ma Y, Fang G, Ren S, Fu Y. 2016. Controlled pesticide release from porous composite hydrogels based on lignin and polyacrylic acid. Bioresources 11(1):2361−71

doi: 10.15376/biores.11.1.2361-2371
[50]

Zhang M, Li J, Chang C, Wang C, Li X, et al. 2019. Effect of egg yolk on the textural, rheology and structural properties of egg gels. Journal of Food Engineering 246:1−6

doi: 10.1016/j.jfoodeng.2018.10.024
[51]

Ogbu IM, Ajiwe VIE. 2016. FTIR studies of thermal stability of the oils and methyl esters from Afzelia africana and Hura crepitans seeds. Renewable Energy 96:203−8

doi: 10.1016/j.renene.2016.04.055
[52]

Sagiri SS, Singh VK, Kulanthaivel S, Banerjee I, Basak P, et al. 2015. Stearate organogel-gelatin hydrogel based bigels: physicochemical, thermal, mechanical characterizations and in vitro drug delivery applications. Journal of the Mechanical Behavior of Biomedical Materials 43:1−17

doi: 10.1016/j.jmbbm.2014.11.026
[53]

Boehnke N, Cam C, Bat E, Segura T, Maynard HD. 2015. Imine hydrogels with tunable degradability for tissue engineering. Biomacromolecules 16(7):2101−8

doi: 10.1021/acs.biomac.5b00519
[54]

Xu L, Gao S, Guo Q, Wang C, Qiao Y, et al. 2020. A solvent-exchange strategy to regulate noncovalent interactions for strong and antiswelling hydrogels. Advanced Materials 32:2004579

doi: 10.1002/adma.202004579
[55]

Wang Y, Yuan C, Cui B, Liu Y. 2018. Influence of cations on texture, compressive elastic modulus, sol-gel transition and freeze-thaw properties of kappa-carrageenan gel. Carbohydrate Polymers 202:530−35

doi: 10.1016/j.carbpol.2018.08.146
[56]

Khalesi H, Lu W, Nishinari K, Fang Y. 2020. New insights into food hydrogels with reinforced mechanical properties: A review on innovative strategies. Advances in Colloid and Interface Science 285:102278

doi: 10.1016/j.cis.2020.102278
[57]

Lyu M, Lyu J, Wang F, Xie J, Bai L, et al. 2023. Analysis of gelation properties of peach-κ-carrageenan gels: Effect of erythritol. Bioactive Carbohydrates and Dietary Fibre 30:100385

doi: 10.1016/j.bcdf.2023.100385
[58]

Xia G, Jia R, Tong J, Zhang X, Zhang ST et al. 2023. Cryoprotective Effects of Carrageenan on Pre-prepared Gel of Minced Shrimp (Litopenaeus Vannamei) During Frozen Storage. Food and Bioprocess Technology 16:2082−94

doi: 10.1007/s11947-023-03051-y
[59]

Mao L, Wang D, Liu F, Gao Y. 2018. Emulsion design for the delivery of β-carotene in complex food systems. Critical Reviews in Food Science and Nutrition 58(5):770−84

doi: 10.1080/10408398.2016.1223599
[60]

Gómez-Mascaraque LG, Soler C, Lopez-Rubio A. 2016. Stability and bioaccessibility of EGCG within edible micro-hydrogels. Chitosan vs. gelatin, a comparative study. Food Hydrocolloids 61:128−38

doi: 10.1016/j.foodhyd.2016.05.009
[61]

Yan X, Zhang X, McClements DJ, Zou L, Liu X, et al. 2019. Co-encapsulation of epigallocatechin gallate (EGCG) and curcumin by two proteins-based nanoparticles: Role of EGCG. Journal of Agricultural and Food Chemistry 67(48):13228−36

doi: 10.1021/acs.jafc.9b04415
[62]

Sun J, Jiang H, Li M, Lu Y, Du Y, et al. 2020. Preparation and characterization of multifunctional konjac glucomannan/carboxymethyl chitosan biocomposite films incorporated with epigallocatechin gallate. Food Hydrocolloids 105:105756

doi: 10.1016/j.foodhyd.2020.105756
[63]

Wang L, Zhou N, Zheng S, Pang J. 2022. Formation of composite hydrogel of carboxymethyl konjac glucomannan/gelatin for sustained release of EGCG. Food Science and Human Wellness 11(5):1373−83

doi: 10.1016/j.fshw.2022.04.037