[1]

Bernard SM, Habash DZ. 2009. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytologist 182:608−20

doi: 10.1111/j.1469-8137.2009.02823.x
[2]

Kissen R, Winge P, Tran DHT, Jørstad TS, Størseth TR, et al. 2010. Transcriptional profiling of an Fd-GOGAT1/GLU1 mutant in Arabidopsis thaliana reveals a multiple stress response and extensive reprogramming of the transcriptome. BMC Genomics 11:190

doi: 10.1186/1471-2164-11-190
[3]

Lea PJ, Miflin BJ. 1974. Alternative route for nitrogen assimilation in higher plants. Nature 251:614−16

doi: 10.1038/251614a0
[4]

Swarbreck SM, Defoin-Platel M, Hindle M, Saqi M, Habash DZ. 2011. New perspectives on glutamine synthetase in grasses. Journal of Experimental Botany 62:1511−22

doi: 10.1093/jxb/erq356
[5]

Wang Y, Wang YM, Lu YT, Qiu QL, Fan DM, et al. 2021. Influence of different nitrogen sources on carbon and nitrogen metabolism and gene expression in tea plants (Camellia sinensis L.). Plant Physiology and Biochemistry 167:561−66

doi: 10.1016/j.plaphy.2021.08.034
[6]

Ma L, Jiang S, Deng M, Lv L, Xu Z, et al. 2021. Thermo condition determines the uptake of autumn and winter applied nitrogen and subsequent utilization in spring tea (Camellia sinensis L.). Horticulturae 7(12):544

doi: 10.3390/horticulturae7120544
[7]

Liu MY, Tang DD, Shi YZ, Ma LF, Zhang QF, et al. 2021. Foliar N application on tea plant at its dormancy stage increases the N concentration of mature leaves and improves the quality and yield of spring tea. Frontiers in Plant Science 12:753086

doi: 10.3389/fpls.2021.753086
[8]

Zhu W, Liu X, Cheng X, Li Y, Liu L. 2023. Shading effects revisited: Comparisons of spring and autumn shading treatments reveal a seasonal-dependent regulation on amino acids in tea leaves. Beverage Plant Research 3:5

doi: 10.48130/bpr-2023-0005
[9]

Ruan L, Wei K, Li JW, He M, Wu L, et al. 2022. Responses of tea plants (Camellia sinensis) with different low-nitrogen tolerances during recovery from nitrogen deficiency. Journal of the Science of Food and Agriculture 102:1405−14

doi: 10.1002/jsfa.11473
[10]

Tang D, Liu M, Fan K, Ruan J. 2017. Research progress of nitrogen utilization and assimilation in tea plant. Acta Horticulturae Sinica 44(9):1759−71

doi: 10.16420/j.issn.0513-353x.2017-0335
[11]

Liu MY, Tang D, Shi Y, Ma L, Li Y, et al. 2019. Short-term inhibition of glutamine synthetase leads to reprogramming of amino acid and lipid metabolism in roots and leaves of tea plant (Camellia sinensis L.). BMC Plant Biology 19:425

doi: 10.1186/s12870-019-2027-0
[12]

Fischer JJ, Beatty PH, Good AG, Muench DG. 2013. Manipulation of microRNA expression to improve nitrogen use efficiency. Plant Science 210:70−81

doi: 10.1016/j.plantsci.2013.05.009
[13]

Tiwari JK, Buckseth T, Zinta R, Saraswati A, Singh RK, et al. 2020. Genome-wide identification and characterization of microRNAs by small RNA sequencing for low nitrogen stress in potato. PLoS ONE 15:e233076

doi: 10.1371/journal.pone.0233076
[14]

Liu D, Song Y, Chen Z, Yu D. 2009. Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiologia Plantarum 136:223−36

doi: 10.1111/j.1399-3054.2009.01229.x
[15]

Che R, Tong H, Shi B, Liu Y, Fang S, et al. 2016. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature Plants 2:15195

doi: 10.1038/nplants.2015.195
[16]

Duan P, Ni S, Wang J, Zhang B, Xu R, et al. 2016. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nature Plants 2:15203

doi: 10.1038/nplants.2015.203
[17]

Gao F, Wang K, Liu Y, Chen Y, Chen P, er al. 2016. Blocking miR396 increases rice yield by shaping inflorescence architecture. Nature Plants 2:15196

doi: 10.1038/nplants.2015.196
[18]

Chandran V, Wang H, Gao F, Cao XL, Chen YP, et al. 2019. miR396-OsGRFsmodule balances growth and rice blast disease-resistance. Frontiers of Plant Science 9:1999

doi: 10.3389/fpls.2018.01999
[19]

Dai Z, Tan J, Zhou C, Yang X, Yang F, et al. 2019. The OsmiR396-OsGRF8-OsF3H-flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa). Plant Biotechnology Journal 17:1657−69

doi: 10.1111/pbi.13091
[20]

Zhou CZ, Tian CY, Zhu C, Lai ZX, Lin YL, et al. 2022. Hidden players in the regulation of secondary metabolism in tea plant: focus on non-coding RNAs. Beverage Plant Research 2:19

doi: 10.48130/bpr-2022-0019
[21]

Li H, Lin Q, Yan M, Wang M, Wang P, et al. 2021. Relationship between secondary metabolism and miRNA for important flavor compounds in different tissues of tea plant (Camellia sinensis) as revealed by genome-wide miRNA analysis. Journal of Agricultural and Food Chemistry 69:2001−12

doi: 10.1021/acs.jafc.0c07440
[22]

Li H, Guo L, Yan M, Hu J, Lin Q, et al. 2022. A rapid and efficient transient expression system for gene function and subcellular localization studies in the tea plant (Camellia sinensis) leaves. Scientia Horticulturae 297:110927

doi: 10.1016/j.scienta.2022.110927
[23]

Liu Y, Wang L, Cheng D, Wu X, Huang D, et al. 2014. Genome-wide comparison of microRNAs and their targeted transcripts among leaf, flower and fruit of sweet orange. BMC Genomics 15:695

doi: 10.1186/1471-2164-15-695
[24]

Zheng G, Wei W, Li Y, Kan L, Wang F, et al. 2019. Conserved and novel roles of miR164-CUC2 regulatory module in specifying leaf and floral organ morphology in strawberry. New Phytologist 224:480−92

doi: 10.1111/nph.15982
[25]

Zhang XR, Henriques R, Lin SS, Niu QW, Chua NH. 2006. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols 1:641−46

doi: 10.1038/nprot.2006.97
[26]

Chen W, Zheng C, Yao M, Chen L. 2021. The tea plant CsWRKY26 promotes drought tolerance in transgenic Arabidopsis plants. Beverage Plant Research 1:3

doi: 10.48130/bpr-2021-0003
[27]

She G, Yu S, Li Z, Peng A, Li P, et al. 2022. Characterization of CsTSI in the biosynthesis of theanine in tea plants (Camellia sinensis). Journal of Agricultural and Food Chemistry 70:826−836

doi: 10.1021/acs.jafc.1c04816
[28]

Liu H, Yu H, Tang G, Huang T. 2018. Small but powerful: function of microRNAs in plant development. Plant Cell Reports 37:515−28

doi: 10.1007/s00299-017-2246-5
[29]

Liu H, Guo S, Xu Y, Li C, Zhang Z, et al. 2014. OsmiR396d-Regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4. Plant Physiology 165:160−174

doi: 10.1104/pp.114.235564
[30]

Chen YP, Dan ZW, Gao F, Chen P, Fan FF, et al. 2020. Rice GROWTH-REGULATING FACTOR7 modulates plant architecture through regulating GA and indole-3-Acetic acid metabolism. Plant Physiology 184:393−406

doi: 10.1104/pp.20.00302
[31]

Debernardi JM, Rodriguez RE, Mecchia MA, Palatnik JF. 2012. Functional specialization of the plant miR396 regulatory network through distinct microRNA-target interactions. PLoS Genetics 8:e1002419

doi: 10.1371/journal.pgen.1002419
[32]

Giacomelli JI, Weigel D, Chan RL Manavella PA. 2012. Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage. New phytologist 195:766−73

doi: 10.1111/j.1469-8137.2012.04259.x
[33]

Wang J, Chen W, Wang H, Li Y, Wang B, et al. 2021. Transcription factor CsDOF regulates glutamine metabolism in tea plants (Camellia sinensis). Plant Science 302:110720

doi: 10.1016/j.plantsci.2020.110720
[34]

Yu Y, Kou X, Gao R, Chen X, Zhao Z, et al. 2021. Glutamine synthetases play a vital role in high accumulation of theanine in tender shoots of albino tea germplasm "Huabai 1". Journal of Agricultural and Food Chemistry 69:13904−15

doi: 10.1021/acs.jafc.1c04567
[35]

Wen B, Luo Y, Liu D, Zhang X, Peng Z, et al. 2020. The R2R3-MYB transcription factor CsMYB73 negatively regulates ʟ-Theanine biosynthesis in tea plants (Camellia sinensis L.). Plant Science 298:110546

doi: 10.1016/j.plantsci.2020.110546
[36]

Fu X, Liao Y, Cheng S, Xu X, Grierson D, et al. 2021. Nonaqueous fractionation and overexpression of fluorescent-tagged enzymes reveals the subcellular sitesof ʟ-theanine biosynthesis in tea. Plant Biotechnology Journal 19:98−108

doi: 10.1111/pbi.13445