[1] |
Li Z, Liu X, Gituru RW, Juntawong N, Zhou M, et al. 2010. Genetic diversity and classification of Nelumbo germplasm of different origins by RAPD and ISSR analysis. Scientia Horticulturae 125:724−32 doi: 10.1016/j.scienta.2010.05.005 |
[2] |
Zhang Y, Lu X, Zeng S, Huang X, Guo Z, et al. 2015. Nutritional composition, physiological functions and processing of lotus (Nelumbo nucifera Gaertn.) seeds: A review. Phytochemistry Reviews 14:321−34 doi: 10.1007/s11101-015-9401-9 |
[3] |
Limwachiranon J, Huang H, Shi Z, Li L, Luo Z. 2018. Lotus flavonoids and phenolic acids: Health promotion and safe consumption dosages. Comprehensive Reviews in Food Science and Food Safety 17:458−71 doi: 10.1111/1541-4337.12333 |
[4] |
Hu P, Ge X, Gao MT, Wang XZ, Zhang YY, et al. 2022. Nelumbo nucifera Gaertn: An updated review of the antitumor activity and mechanisms of alkaloids. Pharmacological Research-Modern Chinese Medicine 5:100167 doi: 10.1016/j.prmcm.2022.100167 |
[5] |
Pei H, Su W, Gui M, Dou M, Zhang Y, et al. 2021. Comparative analysis of chemical constituents in different parts of lotus by UPLC and QToF-MS. Molecules 26:1855 doi: 10.3390/molecules26071855 |
[6] |
National Pharmacopoeia Committee. (Eds.) 2020. Pharmacopoeia of the People's Republic of China. Beijing: China Pharmaceutical Science and Technology Press. pp. 285−87 |
[7] |
Chen S, Li X, Wu J, Li J, Xiao M, et al. 2021. Plumula Nelumbinis: A review of traditional uses, phytochemistry, pharmacology, pharmacokinetics and safety. Journal of Ethnopharmacology 266:113429 doi: 10.1016/j.jep.2020.113429 |
[8] |
Lin S, Wang Z, Lin Y, Ge S, Hamzah SS, et al. 2019. Bound phenolics from fresh lotus seeds exert anti-obesity effects in 3T3-L1 adipocytes and high-fat diet-fed mice by activation of AMPK. Journal of Functional Foods 58:74−84 doi: 10.1016/j.jff.2019.04.054 |
[9] |
Wang Z, Hu J, Hamzah SS, Ge S, Lin Y, et al. 2019. n-Butanol extract of lotus seeds exerts antiobesity effects in 3T3-L1 preadipocytes and high-fat diet-fed mice via activating adenosine monophosphate-activated protein kinase. Journal of Agricultural and Food Chemistry 67:1092−103 doi: 10.1021/acs.jafc.8b05281 |
[10] |
Ziegler J, Facchini PJ. 2008. Alkaloid biosynthesis: Metabolism and trafficking. Annual Review of Plant Biology 59:735−69 doi: 10.1146/annurev.arplant.59.032607.092730 |
[11] |
Hudzik TJ, Patel M, Brown A. 2021. β2-Adrenoceptor agonist activity of higenamine. Drug Testing And Analysis 13:261−67 doi: 10.1002/dta.2992 |
[12] |
Wen J, Li M, Zhang W, Wang H, Bai Y, et al. 2022. Role of higenamine in heart diseases: A mini-review. Frontiers in Pharmacology 12:798495 doi: 10.3389/fphar.2021.798495 |
[13] |
Nakamura S, Nakashima S, Tanabe G, Oda Y, Yokota N, et al. 2013. Alkaloid constituents from flower buds and leaves of sacred lotus (Nelumbo nucifera, Nymphaeaceae) with melanogenesis inhibitory activity in B16 melanoma cells. Bioorganic & Medicinal Chemistry 21:779−87 doi: 10.1016/j.bmc.2012.11.038 |
[14] |
Bharathi Priya L, Huang CY, Hu RM, Balasubramanian B, Baskaran R. 2021. An updated review on pharmacological properties of neferine-A bisbenzylisoquinoline alkaloid from Nelumbo nucifera. Journal of Food Biochemistry 45:e13986 doi: 10.1111/jfbc.13986 |
[15] |
Cheng Y, Li HL, Zhou ZW, Long HZ, Luo HY, et al. 2021. Isoliensinine: A natural compound with "drug-like" potential. Frontiers in Pharmacology 12:630385 doi: 10.3389/fphar.2021.630385 |
[16] |
He CL, Huang LY, Wang K, Gu CJ, Hu J, et al. 2021. Identification of bis-benzylisoquinoline alkaloids as SARS-CoV-2 entry inhibitors from a library of natural products. Signal Transduction and Targeted Therapy 6:131 doi: 10.1038/s41392-021-00531-5 |
[17] |
Bai X, Liu X, Li S, An H, Kang X, et al. 2022. Nuciferine Inhibits TMEM16A in Dietary Adjuvant Therapy for Lung Cancer. Journal of Agricultural and Food Chemistry 70:3687−96 doi: 10.1021/acs.jafc.1c08375 |
[18] |
Kang EJ, Lee SK, Park KK, Son SH, Kim KR, et al. 2017. Liensinine and nuciferine, bioactive components of Nelumbo nucifera, inhibit the growth of breast cancer cells and breast cancer-associated bone loss. Evidence-based Complementary and Alternative Medicine 2017:1583185 doi: 10.1155/2017/1583185 |
[19] |
Wan Y, Xia J, Xu JF, Chen L, Yang Y, et al. 2022. Nuciferine, an active ingredient derived from lotus leaf, lights up the way for the potential treatment of obesity and obesity-related diseases. Pharmacological Research 175:106002 doi: 10.1016/j.phrs.2021.106002 |
[20] |
Zhang L, Gao J, Tang P, Chong L, Liu Y, et al. 2018. Nuciferine inhibits LPS-induced inflammatory response in BV2 cells by activating PPAR-γ. International Immunopharmacology 63:9−13 doi: 10.1016/j.intimp.2018.07.015 |
[21] |
Singh A, Menéndez-Perdomo IM, Facchini PJ. 2019. Benzylisoquinoline alkaloid biosynthesis in opium poppy: An update. Phytochemistry Reviews 18:1457−82 doi: 10.1007/s11101-019-09644-w |
[22] |
Stadler R, Kutchan TM, Zenk MH. 1989. (S)-Norcoclaurine is the central intermediate in benzylisoquinoline alkaloid biosynthesis. Phytochemistry 28:1083−86 doi: 10.1016/0031-9422(89)80187-6 |
[23] |
Minami H, Dubouzet E, Iwasa K, Sato F. 2007. Functional analysis of norcoclaurine synthase in Coptis japonica. Journal of Biological Chemistry 282:6274−82 doi: 10.1074/jbc.M608933200 |
[24] |
Lee EJ, Facchini P. 2010. Norcoclaurine synthase is a member of the pathogenesis-related 10/Bet v1 protein family. The Plant Cell 22:3489−3503 doi: 10.1105/tpc.110.077958 |
[25] |
Li J, Lee EJ, Chang L, Facchini PJ. 2016. Genes encoding norcoclaurine synthase occur as tandem fusions in the Papaveraceae. Scientific Reports 6:39256 doi: 10.1038/srep39256 |
[26] |
Sheng X, Himo F. 2019. Enzymatic Pictet-Spengler reaction: Computational study of the mechanism and enantioselectivity of norcoclaurine synthase. Journal of The American Chemical Society 141:11230−38 doi: 10.1021/jacs.9b04591 |
[27] |
Kashiwada Y, Aoshima A, Ikeshiro Y, Chen YP, Furukawa H, et al. 2005. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids. Bioorganic & Medicinal Chemistry 13:443−48 doi: 10.1016/j.bmc.2004.10.020 |
[28] |
Koshiyama H, Ohkuma H, Kawaguchi H, Hsu H, Chen Y. 1970. Isolation of 1-(p-hydroxybenzyl)-6,7-dihydroxy-1 2,3,4-tetrahydroisoquinoline (demethylcoclaurine), an active alkaloid from Nelumbo nucifera. Chemical and Pharmaceutical Bulletin 18:2564−68 doi: 10.1248/cpb.18.2564 |
[29] |
Lin Z, Yang R, Guan Z, Chen A, Li W. 2014. Ultra-performance LC separation and quadrupole time-of-flight MS identification of major alkaloids in plumula nelumbinis. Phytochemical Analysis 25:485−94 doi: 10.1002/pca.2517 |
[30] |
Hong HX, Lee YI, Jin DR. 2010. Determination of R-(+)-higenamine enantiomer in Nelumbo nucifera by high-performance liquid chromatography with a fluorescent chiral tagging reagent. Microchemical Journal 96:374−79 doi: 10.1016/j.microc.2010.06.011 |
[31] |
Morikawa T, Kitagawa N, Tanabe G, Ninomiya K, Okugawa S, et al. 2016. Quantitative determination of alkaloids in lotus flower (flower buds of Nelumbo nucifera) and their melanogenesis inhibitory activity. Molecules 21:930 doi: 10.3390/molecules21070930 |
[32] |
Wang Z, Li Y, Ma D, Zeng M, Wang Z, et al. 2021. Alkaloids from lotus (Nelumbo nucifera): recent advances in biosynthesis, pharmacokinetics, bioactivity, safety, and industrial applications. Critical Reviews in Food Science and Nutrition 30:4867−900 doi: 10.1080/10408398.2021.2009436 |
[33] |
Maneenet J, Omar AM, Sun S, Kim MJ, Daodee S, et al. 2021. Benzylisoquinoline alkaloids from Nelumbo nucifera Gaertn. petals with antiausterity activities against the HeLa human cervical cancer cell line. Zeitschrift Fur Naturforschung Section C 76:401−6 doi: 10.1515/znc-2020-0304 |
[34] |
Kunitomo J, Yoshikawa Y, Tanaka S, Imori Y, Isoi K, et al. 1973. Alkaloids of Nelumbo nucifera. Phytochemistry 12:699−701 doi: 10.1016/S0031-9422(00)84467-2 |
[35] |
Do TCMV, Nguyen TD, Tran H, Stuppner H, Ganzera M. 2013. Analysis of alkaloids in Lotus (Nelumbo nucifera Gaertn.) leaves by non-aqueous capillary electrophoresis using ultraviolet and mass spectrometric detection. Journal of Chromatography A 1302:174−80 doi: 10.1016/j.chroma.2013.06.002 |
[36] |
Ka SM, Kuo YC, Ho PJ, Tsai PY, Hsu YJ, et al. 2010. (S)-armepavine from Chinese medicine improves experimental autoimmune crescentic glomerulonephritis. Rheumatology 49:1840−51 doi: 10.1093/rheumatology/keq164 |
[37] |
Guo Y, Chen X, Qi J, Yu B. 2016. Simultaneous qualitative and quantitative analysis of flavonoids and alkaloids from the leaves of Nelumbo nucifera Gaertn. using high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Journal of Separation Science 39:2499−507 doi: 10.1002/jssc.201501315 |
[38] |
Liu CM, Kao CL, Wu HM, Li WJ, Huang CT, et al. 2014. Antioxidant and anticancer aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn. cv. Rosa-plena. Molecules 19:17829−38 doi: 10.3390/molecules191117829 |
[39] |
Grienke U, Mair CE, Saxena P, Baburin I, Scheel O, et al. 2015. Human ether-à-go-go related gene (hERG) channel blocking aporphine alkaloids from lotus leaves and their quantitative analysis in dietary weight loss supplements. Journal of Agricultural and Food Chemistry 63:5634−39 doi: 10.1021/acs.jafc.5b01901 |
[40] |
Zhou M, Jiang M, Ying X, Cui Q, Han Y, et al. 2013. Identification and comparison of anti-inflammatory ingredients from different organs of Lotus nelumbo by UPLC/Q-TOF and PCA coupled with a NF-κB reporter gene assay. PLoS ONE 8:81971 doi: 10.1371/journal.pone.0081971 |
[41] |
Deng X, Zhu L, Fang T, Vimolmangkang S, Yang D, et al. 2016. Analysis of isoquinoline alkaloid composition and wound-induced variation in Nelumbo using HPLC-MS/MS. Journal of Agricultural and Food Chemistry 64:1130−36 doi: 10.1021/acs.jafc.5b06099 |
[42] |
Agnihotri VK, ElSohly HN, Khan SI, Jacob MR, Joshi VC, et al. 2008. Constituents of Nelumbo nucifera leaves and their antimalarial and antifungal activity. Phytochemistry Letters 1:89−93 doi: 10.1016/j.phytol.2008.03.003 |
[43] |
Itoh A, Saitoh T, Tani K, Uchigaki M, Sugimoto Y, et al. 2011. Bisbenzylisoquinoline alkaloids from Nelumbo nucifera. Chemical Pharmaceutical Bulletin 59:947−51 doi: 10.1248/cpb.59.947 |
[44] |
Yang GM, Sun J, Pan Y, Zhang JL, Xiao M, et al. 2018. Isolation and identification of a tribenzylisoquinoline alkaloid from Nelumbo nucifera Gaertn, a novel potential smooth muscle relaxant. Fitoterapia 124:58−65 doi: 10.1016/j.fitote.2017.10.020 |
[45] |
Zhao X, Shen J, Chang KJ, Kim SH. 2014. Comparative analysis of antioxidant activity and functional components of the ethanol extract of lotus (Nelumbo nucifera) from various growing regions. Journal of Agricultural and Food Chemistry 62:6227−35 doi: 10.1021/jf501644t |
[46] |
Khan S, Khan HU, Khan FA, Shah A, Wadood A, et al. 2022. Anti-Alzheimer and antioxidant effects of Nelumbo nucifera L. alkaloids, nuciferine and norcoclaurine in alloxan-Induced diabetic albino rats. Pharmaceuticals 15:1205 doi: 10.3390/ph15101205 |
[47] |
Liu CP, Tsai WJ, Shen CC, Lin YL, Liao JF, et al. 2006. Inhibition of (S)-armepavine from Nelumbo nucifera on autoimmune disease of MRL/MpJ-lpr/lpr mice. European Journal Of Pharmacology 531:270−79 doi: 10.1016/j.ejphar.2005.11.062 |
[48] |
Xu J, Zhang X, Yan L, Zhang Z, Wei J, et al. 2022. Insight into Lotusine and Puerarin in Repairing Alcohol-Induced Metabolic Disorder Based on UPLC-MS/MS. International Journal of Molecular Sciences 23:10385 doi: 10.3390/ijms231810385 |
[49] |
Ryu TK, Roh E, Shin HS, Kim JE. 2022. Inhibitory effect of lotusine on solar UV-induced matrix metalloproteinase-1 expression. Plants 11:773 doi: 10.3390/plants11060773 |
[50] |
Yu Y, Lu J, Sun L, Lyu X, Chang XY, et al. 2021. Akkermansia muciniphila: A potential novel mechanism of nuciferine to improve hyperlipidemia. Biomedicine & Pharmacotherapy 133:111014 doi: 10.1016/j.biopha.2020.111014 |
[51] |
Pan Y, Cai B, Wang K, Wang S, Zhou S, et al. 2009. Neferine enhances insulin sensitivity in insulin resistant rats. Journal of Ethnopharmacology 124:98−102 doi: 10.1016/j.jep.2009.04.008 |
[52] |
Xiao M, Xian C, Wang Y, Qi X, Zhang R, et al. 2023. Nuciferine attenuates atherosclerosis by regulating the proliferation and migration of VSMCs through the Calm4/MMP12/AKT pathway in ApoE(−/−) mice fed with High-Fat-Diet. Phytomedicine 108:154536 doi: 10.1016/j.phymed.2022.154536 |
[53] |
Yang ZD, Zhang X, Du J, Ma ZJ, Guo F, et al. 2012. An aporphine alkaloid from Nelumbo nucifera as an acetylcholinesterase inhibitor and the primary investigation for structure-activity correlations. Natural Product Research 26:387−92 doi: 10.1080/14786419.2010.487188 |
[54] |
Yano M, Nakashima S, Oda Y, Nakamura S, Matsuda H. 2020. BBB-permeable aporphine-type alkaloids in Nelumbo nucifera flowers with accelerative effects on neurite outgrowth in PC-12 cells. Journal of Natural Medicines 74:212−18 doi: 10.1007/s11418-019-01368-7 |
[55] |
Sengking J, Oka C, Yawoot N, Tocharus J, Chaichompoo W, et al. 2022. Protective effect of neferine in permanent cerebral ischemic rats via anti-oxidative and anti-apoptotic mechanisms. Neurotoxicity Research 40:1348−59 doi: 10.1007/s12640-022-00568-6 |
[56] |
Lin TY, Hung CY, Chiu KM, Lee MY, Lu CW, et al. 2022. Neferine, an alkaloid from lotus seed embryos, exerts antiseizure and neuroprotective effects in a kainic acid-induced seizure model in rats. International Journal of Molecular Sciences 23:4130 doi: 10.3390/ijms23084130 |
[57] |
Zhong Y, He S, Huang K, Liang M. 2020. Neferine suppresses vascular endothelial inflammation by inhibiting the NF-κB signaling pathway. Archives of Biochemistry and Biophysics 696:108595 doi: 10.1016/j.abb.2020.108595 |
[58] |
Poornima P, Weng CF, Padma VV. 2014. Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest. Biofactors 40:121−31 doi: 10.1002/biof.1115 |
[59] |
Menéndez-Perdomo IM, Facchini PJ. 2023. Elucidation of the (R)-enantiospecific benzylisoquinoline alkaloid biosynthetic pathways in sacred lotus (Nelumbo nucifera). Scientific Reports 13:2955 doi: 10.1038/s41598-023-29415-0 |
[60] |
Facchini PJ, St-Pierre B. 2005. Synthesis and trafficking of alkaloid biosynthetic enzymes. Current Opinion In Plant Biology 8:657−66 doi: 10.1016/j.pbi.2005.09.008 |
[61] |
Stadler R, Zenk MH. 1990. A revision of the generally accepted pathway for the biosynthesis of the benzyltetrahydroisoquinoline alkaloid reticuline. Liebigs Annalen der Chemie 6:555−62 doi: 10.1002/jlac.1990199001104 |
[62] |
Liscombe DK, Louie GV, Noel JP. 2012. Architectures, mechanisms and molecular evolution of natural product methyltransferases. Natural Product Reports 29:1238−50 doi: 10.1039/c2np20029e |
[63] |
Yang, M, Zhu L, Li L, Li J, Xu L, et al. 2017. Digital gene expression analysis provides insight into the transcript profile of the genes involved in aporphine alkaloid biosynthesis in lotus (Nelumbo nucifera). Frontiers in Plant Science 8:80 doi: 10.3389/fpls.2017.00080 |
[64] |
Meelaph T, Kobtrakul K, Chansilpa NN, Han Y, Rani D, et al. 2018. Coregulation of biosynthetic genes and transcription factors for aporphine-type alkaloid production in wounded lotus provides insight into the biosynthetic pathway of nuciferine. ACS Omega 3:8794−802 doi: 10.1021/acsomega.8b00827 |
[65] |
Deng X, Zhao L, Fang T, Xiong Y, Ogutu C, et al. 2018. Investigation of benzylisoquinoline alkaloid biosynthetic pathway and its transcriptional regulation in lotus. Horticulture Research 5:29 doi: 10.1038/s41438-018-0035-0 |
[66] |
Menéndez-Perdomo IM, Facchini PJ. 2020. Isolation and characterization of two O-methyltransferases involved in benzylisoquinoline alkaloid biosynthesis in sacred lotus (Nelumbo nucifera). Journal Of Biological Chemistry 295:1598−612 doi: 10.1074/jbc.RA119.011547 |
[67] |
Yu Y, Liu Y, Dong G, Jiang J, Leng L, et al. 2023. Functional characterization and key residues engineering of a regiopromiscuity O-methyltransferase involved in benzylisoquinoline alkaloid biosynthesis in Nelumbo nucifera. Horticulture Research 10:uhac276 doi: 10.1093/hr/uhac276 |
[68] |
Esau K, Kosakai H. 1975. Laticifers in Nelumbo nucifera Gaertn.: Distribution and structure. Annals of Botany 39:713−19 doi: 10.1093/oxfordjournals.aob.a084985 |
[69] |
Nelson DR. 2009. The cytochrome P450 homepage. Human Genomics 4:59 doi: 10.1186/1479-7364-4-1-59 |
[70] |
Nelson DR, Schuler MA. 2013. Cytochrome P450 genes from the sacred lotus genome. Tropical Plant Biology 6:138−51 doi: 10.1007/s12042-013-9119-z |