[1]

Hui YH. 2012. Fermented plant products and their manufacturing. In Handbook of Plant-Based Fermented Food and Beverage Technology, eds. Hui YH, Evranuz EÖ. 2nd Edition. Boca Raton: CRC Press. pp. 3–22. https://doi.org/10.1201/b12055

[2]

Barrio E, González SS, Arias A, Belloch C, Querol A. 2006. Molecular mechanisms involved in the adaptive evolution of industrial yeasts. In Yeasts in Food and Beverages, eds. Querol A, Fleet G. Berlin, Heidelberg: Springer. pp. 153–74. https://doi.org/10.1007/978-3-540-28398-0_6

[3]

Combina M, Elía A, Mercado L, Catania C, Ganga A, et al. 2005. Dynamics of indigenous yeast populations during spontaneous fermentation of wines from Mendoza, Argentina. International Journal of Food Microbiology 99(3):237−43

doi: 10.1016/j.ijfoodmicro.2004.08.017
[4]

Ultee A, Wacker A, Kunz D, Löwenstein R, König H. 2016. Microbial succession in spontaneously fermented grape must before, during and after stuck fermentation. South African Journal of Enology and Viticulture 34(1):68−78

doi: 10.21548/34-1-1082
[5]

Gobbi M, Comitini F, Domizio P, Romani C, Lencioni L, et al. 2013. Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: A strategy to enhance acidity and improve the overall quality of wine. Food Microbiology 33(2):271−21

doi: 10.1016/j.fm.2012.10.004
[6]

Nealson KH, Platt T, Hastings JW. 1970. Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology 104(1):313−22

doi: 10.1128/jb.104.1.313-322.1970
[7]

Bandara HMHN, Lam OLT, Jin LJ, Samaranayake L. 2012. Microbial chemical signaling: a current perspective. Critical Reviews in Microbiology 38(3):217−49

doi: 10.3109/1040841x.2011.652065
[8]

Nickerson KW, Atkin AL, Hornby JM. 2006. Quorum sensing in dimorphic fungi: farnesol and beyond. Applied and Environmental Microbiology 72(6):3805−13

doi: 10.1128/aem.02765-05
[9]

Lee JE, Hwang GS, Lee CH, Hong YS. 2009. Metabolomics reveals alterations in both primary and secondary metabolites by wine bacteria. Journal of Agricultural and Food Chemistry 57(22):10772−83

doi: 10.1021/jf9028442
[10]

Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annual Review of Microbiology 55:165−99

doi: 10.1146/annurev.micro.55.1.165
[11]

Bakker J, Clarke RJ. 2011. Wine: flavour chemistry. 2nd Edition. Blackwell, John Wiley & Sons.

[12]

Swiegers JH, Bartowsky EJ, Henschke PA, Pretorius I. 2005. Yeast and bacterial modulation of wine aroma and flavour. Australian Journal of Grape and Wine Research 11(2):139−73

doi: 10.1111/j.1755-0238.2005.tb00285.x
[13]

Zott K, Miot-Sertier C, Claisse O, Lonvaud-Funel A, Masneuf-Pomarede I. 2008. Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. International Journal of Food Microbiology 125(2):197−203

doi: 10.1016/j.ijfoodmicro.2008.04.001
[14]

Piao H, Hawley E, Kopf S, DeScenzo R, Sealock S, et al. 2015. Insights into the bacterial community and its temporal succession during the fermentation of wine grapes. Frontiers in Microbiology 6:809

doi: 10.3389/fmicb.2015.00809
[15]

Serra R, Peterson SW. 2007. Penicillium astrolabium and Penicillium neocrassum, two new species isolated from grapes and their phylogenetic placement in the P. olsonii and P. brevicompactum clade. Mycologia 99:78−87

doi: 10.1080/15572536.2007.11832602
[16]

Barata A, Malfeito-Ferreira M, Loureiro V. 2012. The microbial ecology of wine grape berries. International Journal of Food Microbiology 153(3):243−59

doi: 10.1016/j.ijfoodmicro.2011.11.025
[17]

Ganga MA, Martínez C. 2004. Effect of wine yeast monoculture practice on the biodiversity of non-Saccharomyces yeasts. Journal of Applied Microbiology 96:76−83

doi: 10.1046/j.1365-2672.2003.02080.x
[18]

Arroyo-López FN, Orlić S, Querol A, Barrio E. 2009. Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii and their interspecific hybrid. International Journal of Food Microbiology 131(2−3):120−27

doi: 10.1016/j.ijfoodmicro.2009.01.035
[19]

Barata A, Seborro F, Belloch C, Malfeito-Ferreira M, Loureiro V. 2008. Ascomycetous yeast species recovered from grapes damaged by honeydew and sour rot. Journal of Applied Microbiology 104(4):1182−91

doi: 10.1111/j.1365-2672.2007.03631.x
[20]

Steel CC, Blackman JW, Schmidtke LM. 2013. Grapevine bunch rots: Impacts on wine composition, quality, and potential procedures for the removal of wine faults. Journal of Agricultural and Food Chemistry 61(22):5189−206

doi: 10.1021/jf400641r
[21]

Fleet G, Prakitchaiwattana C, Beh A, Heard G. 2002. The yeast ecology of wine grapes. In Biodiversity and biotechnology of wine yeasts. Kerala, India: Research Signpost. pp. 1−17. www.cabdirect.org/cabdirect/abstract/20033120576

[22]

Zott K, Thibon C, Bely M, Lonvaud-Funel A, Dubourdieu D, et al. 2011. The grape must non-Saccharomyces microbial community: Impact on volatile thiol release. International Journal of Food Microbiology 151(2):210−15

doi: 10.1016/j.ijfoodmicro.2011.08.026
[23]

Minty JJ, Singer ME, Scholz SA, Bae CH, Ahn JH, et al. 2013. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proceedings of the National Academy of Sciences of the United States of America 110(36):14592−97

doi: 10.1073/pnas.1218447110
[24]

Pinto C, Pinho D, Cardoso R, Custódio V, Fernandes J, et al. 2015. Wine fermentation microbiome: a landscape from different Portuguese wine appellations. Frontiers in Microbiology 6:905

doi: 10.3389/fmicb.2015.00905
[25]

Mills DA, Johannsen EA, Cocolin L. 2002. Yeast Diversity and Persistence in Botrytis-Affected Wine Fermentations. Applied and Environmental Microbiology 68(10):4884−93

doi: 10.1128/aem.68.10.4884-4893.2002
[26]

Fleet G. 2008. Wine yeasts for the future. FEMS Yeast Research 8(7):979−95

doi: 10.1111/j.1567-1364.2008.00427.x
[27]

Kassemeyer HH, Berkelmann-Löhnertz B. 2009. Fungi of grapes. In Biology of Microorganisms on Grapes, in Must and in Wine, eds. König H, Unden G, Fröhlich J. Berlin, Heidelberg: Springer. pp. 61–87. https://doi.org/10.1007/978-3-540-85463-0_4

[28]

Renouf V, Claisse O, Lonvaud-Funel A. 2007. Inventory and monitoring of wine microbial consortia. Applied Microbiology and Biotechnology 75(1):149−64

doi: 10.1007/s00253-006-0798-3
[29]

Kántor A, Mareček J, Ivanišová E, Terentjeva M, Kačániová M. 2017. Microorganisms of Grape Berries. Proceedings of the Latvian Academy of Sciences. Section B: Natural, Exact, and Applied Sciences 71(6):502−8

doi: 10.1515/prolas-2017-0087
[30]

Jolly NP, Augustyn OPH, Pretorius IS. 2003. The occurrence of non-Saccharomyces cerevisiae yeast species over three vintages in four vineyards and grape musts from four production regions of the Western Cape, South Africa. South African Journal of Enology and Viticulture 24(2

doi: 10.21548/24-2-2640
[31]

Guerzoni E, Marchetti R. 1987. Analysis of yeast flora associated with grape sour rot and of the chemical disease markers. Applied and Environmental Microbiology 53(3):571−76

doi: 10.1128/aem.53.3.571-576.1987
[32]

De La Torre MJ, Millan MC, Perez-Juan P, Morales J, Ortega JM. 1999. Indigenous yeasts associated with two Vitis vinifera grape varieties cultured in southern Spain. Microbios 100(395):27−40

[33]

Sabate J, Cano J, Esteve-Zarzoso B, Guillamón JM. 2002. Isolation and identification of yeasts associated with vineyard and winery by RFLP analysis of ribosomal genes and mitochondrial DNA. Microbiological Research 157(4):267−74

doi: 10.1078/0944-5013-00163
[34]

Čadež N, Zupan J, Raspor P. 2010. The effect of fungicides on yeast communities associated with grape berries. FEMS Yeast Research 10(5):619−30

doi: 10.1111/j.1567-1364.2010.00635.x
[35]

Nisiotou AA, Nychas GJE. 2007. Yeast populations residing on healthy or Botrytis-infected grapes from a vineyard in Attica, Greece. Applied and Environmental Microbiology 73(8):2765−68

doi: 10.1128/aem.01864-06
[36]

Lonvaud-Funel A. 1999. Lactic acid bacteria in the quality improvement and depreciation of wine. In Lactic Acid Bacteria: Genetics, Metabolism and Applications, eds. Konings WN, Kuipers OP, In't Veld JHJH. Netherlands: Springer, Dordrecht. pp. 317−31. https://doi.org/10.1007/978-94-017-2027-4_16

[37]

González-Arenzana L, López R, Santamaría P, Tenorio C, López-Alfaro I. 2012. Dynamics of indigenous lactic acid bacteria populations in wine fermentations from La Rioja (Spain) during three vintages. Microbial Ecology 63(1):12−19

doi: 10.1007/s00248-011-9911-y
[38]

Martins G, Miot-Sertier C, Lauga B, Claisse O, Lonvaud-Funel A, et al. 2012. Grape berry bacterial microbiota: Impact of the ripening process and the farming system. International Journal of Food Microbiology 158(2):93−100

doi: 10.1016/j.ijfoodmicro.2012.06.013
[39]

Renouf V, Clasisse O, Lonvaud-funel A. 2005. Understanding the microbial ecosystem on the grape berry surface through numeration and identification of yeast and bacteria. Australian Journal of Grape and Wine Research 11(3):316−27

doi: 10.1111/j.1755-0238.2005.tb00031.x
[40]

Rousseaux S, Diguta CF, Radoï-Matei F, Alexandre H, Guilloux-Bénatier M. 2014. Non-Botrytis grape-rotting fungi responsible for earthy and moldy off-flavors and mycotoxins. Food Microbiology 38:104−21

doi: 10.1016/j.fm.2013.08.013
[41]

Adu SK, Yafetto L, Ofosuhene A, Offei-Affedzie T, Adu S, et al. 2018. Biotechnological potential of agro-industrial wastes for protein enrichment by solid-state fermentation using Aspergillus niger. Studies in Fungi 3(1):176−86

doi: 10.5943/sif/3/1/18
[42]

Abdel-Sater MA, Abdel-Latif AMA, Abdel-Wahab D, Al-Bedak O. 2021. Endophytic mycobiota of wild medicinal plants from New Valley Governorate, Egypt and quantitative assessment of their cell wall degrading enzymes. Studies in Fungi 6(1):78−91

doi: 10.5943/sif/6/1/4
[43]

Nissen P, Nielsen D, Arneborg N. 2003. Viable Saccharomyces cerevisiae cells at high concentrations cause early growth arrest of non-Saccharomyces yeasts in mixed cultures by a cell-cell contact-mediated mechanism. Yeast 20(4):331−41

doi: 10.1002/yea.965
[44]

Fleet GH. 2003. Yeast interactions and wine flavour. International Journal of Food Microbiology 86(1-2):11−22

doi: 10.1016/s0168-1605(03)00245-9
[45]

Bleve G, Grieco F, Cozzi G, Logrieco A, Visconti A. 2006. Isolation of epiphytic yeasts with potential for biocontrol of Aspergillus carbonarius and A. niger on grape. International Journal of Food Microbiology 108(2):204−9

doi: 10.1016/j.ijfoodmicro.2005.12.004
[46]

Wuster A, Babu MM. 2008. Chemical molecules that regulate transcription and facilitate cell-to-cell communication. In Wiley Encyclopedia of Chemical Biology, ed. Begley TP. US: John Wiley & Sons. pp. 1−11. https://doi.org/10.1002/9780470048672.wecb501

[47]

Atkinson S, Williams P. 2009. Quorum sensing and social networking in the microbial world. Journal of the Royal Society Interface 6(40):959−78

doi: 10.1098/rsif.2009.0203
[48]

Winzer K, Hardie KR, Burgess N, Doherty N, Kirke D, et al. 2002. LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology 148(4):909−22

doi: 10.1099/00221287-148-4-909
[49]

March JC, Bentley WE. 2004. Quorum sensing and bacterial cross-talk in biotechnology. Current Opinion in Biotechnology 15(5):495−502

doi: 10.1016/j.copbio.2004.08.013
[50]

Diggle SP, Griffin AS, Campbell GS, West SA. 2007. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450(7168):411−14

doi: 10.1038/nature06279
[51]

Monds RD, O’Toole GA. 2014. Metabolites as Intercellular Signals for Regulation of Community-Level Traits. In Chemical Communication Among Bacteria, eds. Winans SC, Bassler BL. Washington, DC, US: ASM Press. pp. 105–29. https://doi.org/10.1128/9781555815578.ch8

[52]

Choudhary S, Schmidt-Dannert C. 2010. Applications of quorum sensing in biotechnology. Applied Microbiology and Biotechnology 86(5):1267−79

doi: 10.1007/s00253-010-2521-7
[53]

Ivey M, Massel M, Phister TG. 2013. Microbial interactions in food fermentations. Annual Review of Food Science and Technology 4:141−62

doi: 10.1146/annurev-food-022811-101219
[54]

Affeldt KJ, Brodhagen M, Keller NP. 2012. Aspergillus oxylipin signaling and quorum sensing pathways depend on g protein-coupled receptors. Toxins 4(9):695−97

doi: 10.3390/toxins4090695
[55]

Avbelj M, Zupan J, Raspor P. 2016. Quorum-sensing in yeast and its potential in wine making. Applied Microbiology and Biotechnology 100(18):7841−52

doi: 10.1007/s00253-016-7758-3
[56]

Alem MAS, Oteef MDY, Flowers TH, Douglas LJ. 2006. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryotic Cell 5(10):1770−79

doi: 10.1128/ec.00219-06
[57]

Sprague GFJ, Winans SC. 2006. Eukaryotes learn how to count: quorum sensing by yeast. Genes & Development 20(9):1045−49

doi: 10.1101/gad.1432906
[58]

Zupan J, Avbelj M, Butinar B, Kosel J, Šergan M, et al. 2013. Monitoring of Quorum-Sensing Molecules during Minifermentation Studies in Wine Yeast. Journal of Agricultural and Food Chemistry 61(10):2496−505

doi: 10.1021/jf3051363
[59]

Chen H, Fink GR. 2006. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes & Development 20(9):1150−61

doi: 10.1101/gad.1411806
[60]

Hogan DA. 2006. Quorum sensing: Alcohols in a social situation. Current Biology 16(12):R457−R458

doi: 10.1016/j.cub.2006.05.035
[61]

Hawver LA, Jung SA, Ng WL. 2016. Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiology Reviews 40(5):738−52

doi: 10.1093/femsre/fuw014
[62]

Raina S, De Vizio D, Palonen EK, Odell M, Brandt AM, et al. 2012. Is quorum sensing involved in lovastatin production in the filamentous fungus Aspergillus terreus? Process Biochemistry 47(5):843−52

doi: 10.1016/j.procbio.2012.02.021
[63]

Renault PE, Albertin W, Bely M. 2013. An innovative tool reveals interaction mechanisms among yeast populations under oenological conditions. Applied Microbiology and Biotechnology 97(9):4105−19

doi: 10.1007/s00253-012-4660-5
[64]

Govender P, Kroppenstedt S, Bauer FF. 2011. Novel wine-mediated FLO11 flocculation phenotype of commercial Saccharomyces cerevisiae wine yeast strains with modified FLO gene expression. FEMS Microbiology Letters 317(2):117−26

doi: 10.1111/j.1574-6968.2011.02219.x
[65]

Nishihara H, Kio K, Imamura M. 2000. Possible mechanism of co-flocculation between non-flocculent yeasts. Journal of the Institute of Brewing 106(1):7−10

doi: 10.1002/j.2050-0416.2000.tb00034.x
[66]

Peng X, Sun J, Iserentant D, Michiels C, Verachtert H. 2001. Flocculation and coflocculation of bacteria by yeasts. Applied Microbiology and Biotechnology 55(6):777−81

doi: 10.1007/s002530000564
[67]

Deloire A, Vaudour E, Carey V, Bonnardot V, Van Leeuwen C. 2005. Grapevine responses to terroir: A global approach. OENO One 39(4):149−62

doi: 10.20870/oeno-one.2005.39.4.888
[68]

Matei F. 2017. Technical guide for fruit wine production. In Science and Technology of Fruit Wine Production, eds. Kosseva MR, Joshi VK, Panesar PS. UK: Academic Press. pp. 663−703. https://doi.org/10.1016/B978-0-12-800850-8.00014-4

[69]

Johansen P, Jespersen L. 2017. Impact of quorum sensing on the quality of fermented foods. Current Opinion in Food Science 13:16−25

doi: 10.1016/j.cofs.2017.01.001
[70]

Avbelj M, Zupan J, Kranjc L, Raspor P. 2015. Quorum-sensing kinetics in Saccharomyces cerevisiae: A symphony of ARO genes and aromatic alcohols. Journal of Agricultural and Food Chemistry 63:8544−50

doi: 10.1021/acs.jafc.5b03400
[71]

Ghosh S, Kebaara BW, Atkin AL, Nickerson KW. 2008. Regulation of aromatic alcohol production in Candida albicans. Applied and Environmental Microbiology 74(23):7211−18

doi: 10.1128/AEM.01614-08
[72]

Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, et al. 2007. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. Journal of Biotechnology 131:34−44

doi: 10.1016/j.jbiotec.2007.05.010
[73]

Legras JL, Moreno-García J, Zara S, Zara G, García-Martínez T, et al. 2016. Flor yeast: New perspectives beyond wine aging. Frontiers in Microbiology 7:503

doi: 10.3389/fmicb.2016.00503
[74]

Zara S, Bakalinsky AT, Zara G, Pirino G, Demontis MA, et al. 2005. FLO11-based model for air-liquid interfacial biofilm formation by Saccharomyces cerevisiae. Applied and Environmental Microbiology 71:2934−39

[75]

Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, et al. 1996. Life with 6000 genes. Science 274:546−67

doi: 10.1126/science.274.5287.546
[76]

Mosier AP, Cady NC. 2011. Analysis of bacterial surface interactions using microfluidic systems. Science Progress 94:431−50

doi: 10.3184/003685011X13201828216868
[77]

Schwartz T, Walter S, Marten S-M, Kirschhöfer F, Nusser M, et al. 2006. Use of quantitative real-time RT-PCR to analyse the expression of some quorum-sensing regulated genes in Pseudomonas aeruginosa. Analytical and Bioanalytical Chemistry 387:513−21

doi: 10.1007/s00216-006-0909-0
[78]

Sirén K, Mak SST, Fischer U, Hansen LH, Gilbert MTP. 2019. Multi-omics and potential applications in wine production. Current Opinion in Biotechnology 56:172−78

doi: 10.1016/j.copbio.2018.11.014
[79]

Sternes PR, Lee D, Kutyna DR, Borneman AR. 2017. A combined meta-barcoding and shotgun metagenomic analysis of spontaneous wine fermentation. GigaScience 6(7):gix040

doi: 10.1093/gigascience/gix040
[80]

Cozzolino D. 2016. Metabolomics in grape and wine: Definition, current status, and future prospects. Food Analytical Methods 9(11):2986−97

doi: 10.1007/s12161-016-0502-x
[81]

Almeida OGG, Pinto UM, Matos CB, Frazilio DA, Braga VF, et al. 2020. Does Quorum Sensing play a role in microbial shifts along spontaneous fermentation of cocoa beans? An in silico perspective Food Research International 131:109034

doi: 10.1016/j.foodres.2020.109034
[82]

Windsor W. 2020. How quorum sensing works. https://asm.org/Articles/2020/June/How-Quorum-Sensing-Works (Acessed on 05/05/2023)