[1]

Li X, Ma Z, Song Y, Shen W, Yue Q, et al. 2023. Insights into the molecular mechanisms underlying responses of apple trees to abiotic stresses. Horticulture Research 10:uhad144

doi: 10.1093/hr/uhad144
[2]

Jia X, Zhu Y, Hu Y, Zhang R, Cheng L, et al. 2019. Integrated physiologic, proteomic, and metabolomic analyses of Malus halliana adaptation to saline – alkali stress. Horticulture Research 6:91

doi: 10.1038/s41438-019-0172-0
[3]

Kudla J, Xu Q, Harter K, Gruissem W, Luan S. 1999. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proceedings of the National Academy of Sciences of the United States of America 96:4718−23

doi: 10.1073/pnas.96.8.4718
[4]

Kolukisaoglu Ü, Weinl S, Blazevic D, Batistic O, Kudla J. 2004. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiology 134:43−58

doi: 10.1104/pp.103.033068
[5]

Zhang H, Yang B, Liu W, Li H, Wang L, et al. 2014. Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC Plant Biology 14:8

doi: 10.1186/1471-2229-14-8
[6]

Xi Y, Liu J, Dong C, Cheng ZMM. 2017. The CBL and CIPK gene family in grapevine (Vitis vinifera): genome-wide analysis and expression profiles in response to various abiotic stresses. Frontiers in Plant Science 8:978

doi: 10.3389/fpls.2017.00978
[7]

Tang R, Wang C, Li K, Luan S. 2020. The CBL–CIPK calcium signaling network: unified paradigm from 20 years of discoveries. Trends in Plant Science 25:604−17

doi: 10.1016/j.tplants.2020.01.009
[8]

Thoday-Kennedy EL, Jacobs AK, Roy SJ. 2015. The role of the CBL–CIPK calcium signalling network in regulating ion transport in response to abiotic stress. Plant Growth Regulation 76:3−12

doi: 10.1007/s10725-015-0034-1
[9]

Shi H, Quintero FJ, Pardo JM, Zhu J. 2002. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. The Plant Cell 14:465−77

doi: 10.1105/tpc.010371
[10]

Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, et al. 2007. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. The Plant Journal 52:223−39

doi: 10.1111/j.1365-313X.2007.03236.x
[11]

Lee SC, Lan WZ, Kim BG, Li L, Cheong YH, et al. 2007. A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proceedings of the National Academy of Sciences of the United States of America 104:15959−64

doi: 10.1073/pnas.0707912104
[12]

Pandey GK, Grant JJ, Cheong YH, Kim BG, Li LG, et al. 2008. Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Molecular Plant 1:238−48

doi: 10.1093/mp/ssn003
[13]

Ma X, Li Y, Gai W, Li C, Gong Z. 2021. The CaCIPK3 gene positively regulates drought tolerance in pepper. Horticulture Research 8:216

doi: 10.1038/s41438-021-00651-7
[14]

Yang Y, Yang F, Li X, Shi R, Lu J. 2013. Signal regulation of proline metabolism in callus of the halophyte Nitraria tangutorum Bobr. grown under salinity stress. Plant Cell, Tissue and Organ Culture (PCTOC) 112:33−42

doi: 10.1007/s11240-012-0209-7
[15]

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772−80

doi: 10.1093/molbev/mst010
[16]

Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32:268−74

doi: 10.1093/molbev/msu300
[17]

Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49:W293−W296

doi: 10.1093/nar/gkab301
[18]

Tang H, Bowers JE, Wang X, Ming R, Alam M, et al. 2008. Synteny and collinearity in plant genomes. Science 320:486−88

doi: 10.1126/science.1153917
[19]

Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. 2010. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics, Proteomics & Bioinformatics 8:77−80

doi: 10.1016/S1672-0229(10)60008-3
[20]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[21]

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27

doi: 10.1093/nar/30.1.325
[22]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08

doi: 10.1006/meth.2001.1262
[23]

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−43

doi: 10.1046/j.1365-313x.1998.00343.x
[24]

Lichtenthaler HK, Wellburn AR. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 11:591−92

doi: 10.1042/bst0110591
[25]

Hernandez-Garcia CM, Finer JJ. 2014. Identification and validation of promoters and cis-acting regulatory elements. Plant Science 217:109−19

doi: 10.1016/j.plantsci.2013.12.007
[26]

Li H, Wang X, Li Q, Xu P, Liu Z, et al. 2022. GmCIPK21, a CBL-interacting protein kinase confers salt tolerance in soybean (Glycine max. L). Plant Physiology and Biochemistry 184:47−55

doi: 10.1016/j.plaphy.2022.05.027
[27]

Chen L, Ren F, Zhou L, Wang Q, Zhong H, et al. 2012. The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. Journal of Experimental Botany 63:6211−22

doi: 10.1093/jxb/ers273
[28]

Aslam M, Fakher B, Jakada BH, Zhao L, Cao S, et al. 2019. Genome-wide identification and expression profiling of CBL-CIPK gene family in pineapple (Ananas comosus) and the role of AcCBL1 in abiotic and biotic stress response. Biomolecules 9:293

doi: 10.3390/biom9070293
[29]

Cho JH, Choi MN, Yoon KH, Kim KN. 2018. Ectopic expression of SjCBL1, calcineurin B-like 1 gene from Sedirea japonica, rescues the salt and osmotic stress hypersensitivity in Arabidopsis cbl1 mutant. Frontiers in Plant Science 9:1188

doi: 10.3389/fpls.2018.01188
[30]

Bybordi A, Tabatabaei J. 2009. Effect of salinity stress on germination and seedling properties in canola cultivars (Brassica napus L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37:71−76

[31]

Hopmans JW, Qureshi AS, Kisekka I, Munns R, Grattan SR, et al. 2021. Critical knowledge gaps and research priorities in global soil salinity. Advances in Agronomy 169:1−191

doi: 10.1016/bs.agron.2021.03.001
[32]

Cheong YH, Sung SJ, Kim BG, Pandey GK, Cho JS, et al. 2010. Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Molecules and Cells 29:159−65

doi: 10.1007/s10059-010-0025-z
[33]

Cheong YH, Kim KN, Pandey GK, Gupta R, Grant JJ, et al. 2003. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. The Plant Cell 15:1833−45

doi: 10.1105/tpc.012393
[34]

Gao Y, Zhang G. 2019. A calcium sensor calcineurin B-like 9 negatively regulates cold tolerance via calcium signaling in Arabidopsis thaliana. Plant Signaling & Behavior 14:e1573099

doi: 10.1080/15592324.2019.1573099
[35]

Zhang F, Li L, Jiao Z, Chen Y, Liu H, et al. 2016. Characterization of the calcineurin B-Like (CBL) gene family in maize and functional analysis of ZmCBL9 under abscisic acid and abiotic stress treatments. Plant Science 253:118−29

doi: 10.1016/j.plantsci.2016.09.011
[36]

Feng X, Wang Y, Zhang N, Gao S, Wu J, et al. 2021. Comparative phylogenetic analysis of CBL reveals the gene family evolution and functional divergence in Saccharum spontaneum. BMC Plant Biology 21:395

doi: 10.1186/s12870-021-03175-3
[37]

Sun T, Wang Y, Wang M, Li T, Zhou Y, et al. 2015. Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.). BMC Plant Biology 15:269

doi: 10.1186/s12870-015-0657-4
[38]

Eng WH, Ho WS. 2019. Polyploidization using colchicine in horticultural plants: a review. Scientia Horticulturae 246:604−17

doi: 10.1016/j.scienta.2018.11.010
[39]

Zhao W, Liu H, Zhang L, Hu Z, Liu J, et al. 2019. Genome-wide identification and characterization of FBA gene family in polyploid crop Brassica napus. International Journal of Molecular Sciences 20:5749

doi: 10.3390/ijms20225749
[40]

Nardeli SM, Artico S, Aoyagi GM, de Moura SM, da Franca Silva T, et al. 2018. Genome-wide analysis of the MADS-box gene family in polyploid cotton (Gossypium hirsutum) and in its diploid parental species (Gossypium arboreum and Gossypium raimondii). Plant Physiology and Biochemistry 127:169−84

doi: 10.1016/j.plaphy.2018.03.019
[41]

Van de Peer Y, Mizrachi E, Marchal K. 2017. The evolutionary significance of polyploidy. Nature Reviews Genetics 18:411−24

doi: 10.1038/nrg.2017.26
[42]

Zhang X, Ren X, Qi X, Yang Z, Feng X, et al. 2022. Evolution of the CBL and CIPK gene families in Medicago: genome-wide characterization, pervasive duplication, and expression pattern under salt and drought stress. BMC Plant Biology 22:512

doi: 10.1186/s12870-022-03884-3
[43]

Yamaguchi-Shinozaki K, Shinozaki K. 2005. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends in Plant Science 10:88−94

doi: 10.1016/j.tplants.2004.12.012
[44]

Daszkowska-Golec A. 2016. The role of abscisic acid in drought stress: how ABA helps plants to cope with drought stress. In Drought Stress Tolerance in Plants, eds Hossain M, Wani S, Bhattacharjee S, Burritt D, Tran LS. Vol 2. Springer, Cham. pp. 123−51. https://doi.org/10.1007/978-3-319-32423-4_5

[45]

Ma X, Gai W, Qiao Y, Ali M, Wei A, et al. 2019. Identification of CBL and CIPK gene families and functional characterization of CaCIPK1 under Phytophthora capsici in pepper (Capsicum annuum L.). BMC Genomics 20:775

doi: 10.1186/s12864-019-6125-z
[46]

Zhu X, Wang B, Wang X, Wei X. 2022. Identification of the CIPK-CBL family gene and functional characterization of CqCIPK14 gene under drought stress in quinoa. BMC Genomics 23:447

doi: 10.1186/s12864-022-08683-6
[47]

Jiang M, Zhao C, Zhao M, Li Y, Wen G. 2020. Phylogeny and evolution of calcineurin B-like (CBL) gene family in grass and functional analyses of rice CBLs. Journal of Plant Biology 63:117−30

doi: 10.1007/s12374-020-09240-y
[48]

Lu T, Zhang G, Sun L, Wang J, Hao F. 2017. Genome-wide identification of CBL family and expression analysis of CBLs in response to potassium deficiency in cotton. PeerJ 5:e3653

doi: 10.7717/peerj.3653
[49]

Kang HK, Nam KH. 2016. Reverse function of ROS-induced CBL10 during salt and drought stress responses. Plant Science 243:49−55

doi: 10.1016/j.plantsci.2015.11.006
[50]

Gao C, Lu S, Zhou R, Wang Z, Li Y, et al. 2022. The OsCBL8-OsCIPK17 module regulates seedling growth and confers resistance to heat and drought in rice. International Journal of Molecular Sciences 23:12451

doi: 10.3390/ijms232012451
[51]

Huang S, Chen M, Zhao Y, Wen X, Guo Z, et al. 2020. CBL4-CIPK5 pathway confers salt but not drought and chilling tolerance by regulating ion homeostasis. Environmental and Experimental Botany 179:104230

doi: 10.1016/j.envexpbot.2020.104230
[52]

Mafakheri A, Siosemardeh AF, Bahramnejad B, Struik PC, Sohrabi Y. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science 4:580−85

[53]

Ahmad P, Abdel Latef AA, Hashem A, Abd Allah EF, Gucel S, et al. 2016. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in Plant Science 7:347

doi: 10.3389/fpls.2016.00347
[54]

Del Rio D, Stewart AJ, Pellegrini N. 2005. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Metabolism & Cardiovascular Diseases 15:316−28

doi: 10.1016/j.numecd.2005.05.003
[55]

Alavilli H, Awasthi JP, Rout GR, Sahoo L, Lee BH, et al. 2016. Overexpression of a barley aquaporin gene, HvPIP2;5 confers salt and osmotic stress tolerance in yeast and plants. Frontiers in Plant Science 7:1566

doi: 10.3389/fpls.2016.01566
[56]

Rubio MC, González EM, Minchin FR, Webb KJ, Arrese-Igor C, et al. 2002. Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Physiologia Plantarum 115:531−40

doi: 10.1034/j.1399-3054.2002.1150407.x