[1]

Hu Y, Xiang W, Karina VR, Lei P, Deng X, et al. 2022. Photosynthetic and hydraulic traits influence forest resistance and resilience to drought stress across different biomes. Science of The Total Environment 828:154517

doi: 10.1016/j.scitotenv.2022.154517
[2]

Kinoshita T, Kume A, Hanba YT. 2021. Seasonal variations in photosynthetic functions of the urban landscape tree species Gingko biloba: photoperiod is a key trait. Trees 35:273−85

doi: 10.1007/s00468-020-02033-3
[3]

Fu YH, Li X, Chen S, Wu Z, Su J, et al. 2022. Soil moisture regulates warming responses of autumn photosynthetic transition dates in subtropical forests. Global Change Biology 28:4935−46

doi: 10.1111/gcb.16227
[4]

Zhang B, Zhou L, Zhou X, Bai Y, Zhan M, et al. 2022. Differential responses of leaf photosynthesis to insect and pathogen outbreaks: a global synthesis. Science of The Total Environment 832:155052

doi: 10.1016/j.scitotenv.2022.155052
[5]

Kännaste A, Jürisoo L, Runno-Paurson E, Kask K, Talts E, et al. 2023. Impacts of Dutch elm disease-causing fungi on foliage photosynthetic characteristics and volatiles in Ulmus species with different pathogen resistance. Tree Physiology 43:57−74

doi: 10.1093/treephys/tpac108
[6]

Bryant KN, Stenzel J, Mathias J, Kwon H, Kolden CA, et al. 2022. Boosts in leaf-level photosynthetic capacity aid Pinus ponderosa recovery from wildfire. Environmental Research Letters 17:114034

doi: 10.1088/1748-9326/ac9cf2
[7]

Melki F, Talbi ZO, Jeder S, Louati F, Nouairi I, et al. 2022. Cadmium and lead excess differently affect growth, photosynthetic activity and nutritional status of Trigonella foenum-graecum L. Crop & Pasture Science 73:969−80

doi: 10.1071/CP21583
[8]

Liu Z, Tian L, Chen M, Zhang L, Lu Q, et al. 2023. Hormesis responses of growth and photosynthetic characteristics in Lonicera japonica Thunb. to cadmium stress: whether electric field can improve or not? Plants 12:933

doi: 10.3390/plants12040933
[9]

Zhou J, Song F, He Y, Zhang W, Liang X, et al. 2023. LncRNA evolution and DNA methylation variation participate in photosynthesis pathways of distinct lineages of Populus. Forestry Research 3:3

doi: 10.48130/FR-2023-0003
[10]

Song Y and Jin G. 2023. Do tree size and tree shade tolerance affect the photosynthetic capacity of broad-leaved tree species? Plants 12:523

doi: 10.3390/plants12030523
[11]

Schmiege SC, Griffin KL, Boelman NT, Vierling LA, Bruner SG, et al. 2023. Vertical gradients in photosynthetic physiology diverge at the latitudinal range extremes of white spruce. Plant, Cell & Environment 46:45−63

doi: 10.1111/pce.14448
[12]

Kosugi Y, Takanashi S, Yokoyama N, Kamakura M. 2012. Vertical variation in leaf gas exchange parameters for a Southeast Asian tropical rainforest in Peninsular Malaysia. Journal of Plant Research 125:735−48

doi: 10.1007/s10265-012-0495-5
[13]

Chen X, Sun J, Lyu M, Wang M, Hu D, et al. 2021. Prediction of photosynthetic light-response curves using traits of the leaf economics spectrum for 75 woody species: effects of leaf habit and sun–shade dichotomy. American Journal of Botany 108:423−31

doi: 10.1002/ajb2.1629
[14]

Wyka TP, Oleksyn J, Żytkowiak R, Karolewski P, Jagodziński AM, et al. 2012. Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species. Oecologia 170:11−24

doi: 10.1007/s00442-012-2279-y
[15]

Coble AP, Cavaleri MA. 2014. Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest. Tree Physiology 34:146−58

doi: 10.1093/treephys/tpt126
[16]

Coble AP, Vanderwall B, Mau A, Cavaleri MA. 2016. How vertical patterns in leaf traits shift seasonally and the implications for modeling canopy photosynthesis in a temperate deciduous forest. Tree Physiology 36:1077−91

doi: 10.1093/treephys/tpw043
[17]

Liu Q, Li F. 2018. Spatial and seasonal variations of standardized photosynthetic parameters under different environmental conditions for young planted Larix olgensis Henry trees. Forests 9:522

doi: 10.3390/f9090522
[18]

Martin RE, Asner GP, Bentley LP, Shenkin A, Salinas N, et al. 2019. Covariance of sun and shade leaf traits along a tropical forest elevation gradient. Frontiers in Plant Science 10:1810

doi: 10.3389/fpls.2019.01810
[19]

Koch GW, Sillett SC, Jennings GM, Davis SD. 2004. The limits to tree height. Nature 428:851−54

doi: 10.1038/nature02417
[20]

Hata Y, Kumagai T, Shimizu T, Miyazawa Y. 2023. Implications of seasonal changes in photosynthetic traits and leaf area index for canopy CO2 and H2O fluxes in a Japanese cedar (Cryptomeria japonica D. Don) plantation. Ecological Modelling 477:110271

doi: 10.1016/j.ecolmodel.2022.110271
[21]

Collier DE, Thibodeau BA. 1995. Changes in respiration and chemical content during autumnal senescence of Populus tremuloides and Quercus rubra leaves. Tree Physiology 15:759−64

doi: 10.1093/treephys/15.11.759
[22]

Wyka TP, Żytkowiak R, Oleksyn J. 2016. Seasonal dynamics of nitrogen level and gas exchange in different cohorts of Scots pine needles: a conflict between nitrogen mobilization and photosynthesis? European Journal of Forest Research 135:483−93

doi: 10.1007/s10342-016-0947-x
[23]

Yin H, Yang M, Li P, Yu X, Xiong H, et al. 2022. Seasonality of photosynthetic physiology and leaf anatomy in three different Quercus L. Section Cyclobalanopsis seedlings of Quercus chungii, Quercus gilva, and Quercus glauca in the subtropical region of South China. Forests 13:2067

doi: 10.3390/f13122067
[24]

Shimada R, Takahashi K. 2022. Diurnal and seasonal variations in photosynthetic rates of dwarf pine Pinus pumila at the treeline in central Japan. Arctic, Antarctic, and Alpine Research 54:1−12

doi: 10.1080/15230430.2021.2022995
[25]

Atkin OK, Bloomfield KJ, Reich PB, Tjoelker MG, Asner GP, et al. 2015. Global variability in leaf respiration in relation to climate and leaf traits. New Phytologist 206:614−36

doi: 10.1111/nph.13253
[26]

Coble AP, Cavaleri MA. 2015. Light acclimation optimizes leaf functional traits despite height-related constraints in a canopy shading experiment. Oecologia 177:1131−43

doi: 10.1007/s00442-015-3219-4
[27]

Xu M, Wang Q, Yang F, Zhang T, Zhu X, et al. 2022. The responses of photosynthetic light response parameters to temperature among different seasons in a coniferous plantation of subtropical China. Ecological Indicators 145:109595

doi: 10.1016/j.ecolind.2022.109595
[28]

Zlobin IE, Kartashov AV, Pashkovskiy PP, Ivanov YV, Kreslavski VD, et al. 2019. Comparative photosynthetic responses of Norway spruce and Scots pine seedlings to prolonged water deficiency. Journal of Photochemistry and Photobiology B: Biology 201:111659

doi: 10.1016/j.jphotobiol.2019.111659
[29]

Coble AP, Cavaleri MA. 2017. Vertical leaf mass per area gradient of mature sugar maple reffects both height-driven increases in vascular tissue and light-driven increases in palisade layer thickness. Tree Physiology 37:1337−51

doi: 10.1093/treephys/tpx016
[30]

Xiong D, Flexas J. 2021. Leaf anatomical characteristics are less important than leaf chemical properties in determining photosynthesis responses to top-dress N. Journal of Experimental Botany 72:5709−20

doi: 10.1093/jxb/erab230
[31]

Li W, Li J, Wei J, Niu C, Yang D, et al. 2023. Response of photosynthesis, the xanthophyll cycle, and wax in Japanese yew (Taxus cuspidata L.) seedlings and saplings under high light conditions. PeerJ 11:e14757

doi: 10.7717/peerj.14757
[32]

Mayoral C, Calama R, Sánchez-González M, Pardos M. 2015. Modelling the influence of light, water and temperature on photosynthesis in young trees of mixed Mediterranean forests. New Forests 46:485−506

doi: 10.1007/s11056-015-9471-y
[33]

Kitao M, Yazaki K, Tobita H, Agathokleous E, Kishimoto J, et al. 2022. Exposure to strong irradiance exacerbates photoinhibition and suppresses N resorption during leaf senescence in shade-grown seedlings of fullmoon maple (Acer japonicum). Frontiers in Plant Science 13:6413

doi: 10.3389/fpls.2022.1006413
[34]

Hazrati S, Tahmasebi-Sarvestani Z, Modarres-Sanavy SAM, Mokhtassi-Bidgoli A, Nicola S. 2016. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiology and Biochemistry 106:141−48

doi: 10.1016/j.plaphy.2016.04.046
[35]

Xu H, Xiao J, Zhang Z, Ollinger SV, Hollinger DY, et al. 2020. Canopy photosynthetic capacity drives contrasting age dynamics of resource use efficiencies between mature temperate evergreen and deciduous forests. Global Change Biology 26:6156−67

doi: 10.1111/gcb.15312
[36]

He X, Si J, Zhou D, Wang C, Zhao C, et al. 2022. Leaf chlorophyll parameters and photosynthetic characteristic variations with stand age in a typical desert species (Haloxylon ammodendron). Frontiers in Plant Science 13:967849

doi: 10.3389/fpls.2022.967849
[37]

Letts MG, Phelan CA, Johnson DRE, Rood SB. 2008. Seasonal photosynthetic gas exchange and leaf reflectance characteristics of male and female cottonwoods in a riparian woodland. Tree Physiology 28:1037−48

doi: 10.1093/treephys/28.7.1037
[38]

Liu Q, Xie L, Dong L, Li F. 2021. Dynamic simulation of the multilayer crown net photosynthetic rate and determination of the functional crown for larch (Larix olgensis) trees. New Forests 52:1011−35

doi: 10.1007/s11056-021-09839-0
[39]

Bassman JH, Zwier JC. 1991. Gas exchange characteristics of Populus trichocarpa, Populus deltoides and Populus trichocarpa × P. deltoids clones. Tree Physiology 8:145−59

doi: 10.1093/treephys/8.2.145
[40]

R Core Team 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at https://www.R-project.org/.

[41]

Woodruff DR. 2014. The impacts of water stress on phloem transport in Douglas-fir trees. Tree Physiology 34:5−14

doi: 10.1093/treephys/tpt106
[42]

Zhang Y, Equiza MA, Zheng Q, Tyree MT. 2012. Factors controlling plasticity of leaf morphology in Robinia pseudoacacia L. II: the impact of water stress on leaf morphology of seedlings grown in a controlled environment chamber. Annals of Forest Science 69:39−47

doi: 10.1007/s13595-011-0134-7
[43]

Coble AP, Autio A, Cavaleri MA, Binkley D, Ryan MG. 2014. Converging patterns of vertical variability in leaf morphology and nitrogen across seven Eucalyptus plantations in Brazil and Hawaii, USA. Trees-structure and Function 28:1−15

doi: 10.1007/s00468-013-0925-6
[44]

Ambrose AR, Sillett SC, Dawson TE. 2009. Effects of tree height on branch hydraulics, leaf structure and gas exchange in California redwoods. Plant, Cell & Environment 32:743−57

doi: 10.1111/j.1365-3040.2009.01950.x
[45]

Weerasinghe LK, Creek D, Crous KY, Xiang S, Liddell MJ, et al. 2014. Canopy position affects the relationships between leaf respiration and associated traits in a tropical rainforest in Far North Queensland. Tree Physiology 34:564−84

doi: 10.1093/treephys/tpu016
[46]

Mullin LP, Sillett SC, Koch GW, Tu KP, Antoine ME. 2009. Physiological consequences of height-related morphological variation in Sequoia sempervirens foliage. Tree Physiology 29:999−1010

doi: 10.1093/treephys/tpp037
[47]

Puglielli G, Varone L, Gratani L, Catoni R. 2017. Specific leaf area variations drive acclimation of Cistus salvifolius in different light environments. Photosynthetica 55:31−40

doi: 10.1007/s11099-016-0235-5
[48]

Oguchi R, Hikosaka K, Hirose T. 2005. Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant, Cell & Environment 28:916−27

doi: 10.1111/j.1365-3040.2005.01344.x
[49]

Broeckx LS, Fichot R, Verlinden MS, Ceulemans R. 2014. Seasonal variations in photosynthesis, intrinsic water-use efficiency and stable isotope composition of poplar leaves in a short-rotation plantation. Tree Physiology 34:701−715

doi: 10.1093/treephys/tpu057
[50]

Riikonen J, Oksanen E, Peltonen P, Holopainen T, Vapaavuori E. 2003. Seasonal variation in physiological characteristics of two silver birch clones in the field. Canadian Journal of Forest Research 33:2164−76

doi: 10.1139/x03-136
[51]

Pieruschka R, Albrecht H, Muller O, Berry JA, Klimov D, et al. 2014. Daily and seasonal dynamics of remotely sensed photosynthetic efficiency in tree canopies. Tree Physiology 34:674−85

doi: 10.1093/treephys/tpu035
[52]

Misson L, Tu KP, Boniello RA, Goldstein AH. 2006. Seasonality of photosynthetic parameters in a multi-specific and vertically complex forest ecosystem in the Sierra Nevada of California. Tree Physiology 26:729−41

doi: 10.1093/treephys/26.6.729
[53]

Grassi G, Vicinelli E, Ponti F, Cantoni L, Magnani F. 2005. Seasonal and interannual variability of photosynthetic capacity in relation to leaf nitrogen in a deciduous forest plantation in northern Italy. Tree Physiology 25:349−60

doi: 10.1093/treephys/25.3.349
[54]

Sperlich D, Chang CT, Peñuelas J, Gracia C, Sabaté S. 2015. Seasonal variability of foliar photosynthetic and morphological traits and drought impacts in a Mediterranean mixed forest. Tree Physiology 35:501−20

doi: 10.1093/treephys/tpv017
[55]

Pardos M, Puértolas J, Madrigal G, Garriga E, De Blas S, et al. 2010. Seasonal changes in the physiological activity of regeneration under a natural light gradient in a Pinus pinea regular stand. Forest Systems 19:367−80

doi: 10.5424/fs/2010193-9102
[56]

Kunert N, Hajek P, Hietz P, Morris H, Rosner S, et al. 2022. Summer temperatures reach the thermal tolerance threshold of photosynthetic decline in temperate conifers. Plant Biology 24:1254−61

doi: 10.1111/plb.13349
[57]

Yasumura Y, Hikosaka K, Hirose T. 2006. Seasonal changes in photosynthesis, nitrogen content and nitrogen partitioning in Lindera umbellata leaves grown in high or low irradiance. Tree Physiology 26:1315−23

doi: 10.1093/treephys/26.10.1315
[58]

Rodríguez-calcerrada J, Atkin OK, Robson TM, Zaragoza-castells J, Gil L, et al. 2010. Thermal acclimation of leaf dark respiration of beech seedlings experiencing summer drought in high and low light environments. Tree Physiology 30:214−24

doi: 10.1093/treephys/tpp104
[59]

Radoglou K, Teskey RO. 1997. Changes in rates of photosynthesis and respiration during needle development of loblolly pine. Tree Physiology 17:485−88

doi: 10.1093/treephys/17.7.485
[60]

Vose JM, Ryan MG. 2002. Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth, tissue N, and photosynthesis. Global Change Biology 8:182−93

doi: 10.1046/j.1365-2486.2002.00464.x
[61]

Walters RG. 2005. Towards an understanding of photosynthetic acclimation. Journal of Experiment Botany 56:435−47

doi: 10.1093/jxb/eri060
[62]

Way DA, Sage RF. 2008. Thermal acclimation of photosynthesis in black spruce [Picea mariana (Mill.) B.S.P.]. Plant, Cell & Environment 31:1250−62

doi: 10.1111/j.1365-3040.2008.01842.x
[63]

Wieser G, Oberhuber W, Walder L, Spieler D, Gruber A. 2010. Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian Alps. Annals of Forest Science 67:201

doi: 10.1051/forest/2009094
[64]

Han Q, Kawasaki T, Katahata S, Mukai Y, Chiba Y. 2003. Horizontal and vertical variations in photosynthetic capacity in a Pinus densiflora crown in relation to leaf nitrogen allocation and acclimation to irradiance. Tree Physiology 23:851−57

doi: 10.1093/treephys/23.12.851
[65]

Fellner H, Dirnberger GF, Sterba H. 2016. Specific leaf area of European Larch (Larix decidua MILL.). Trees 30:1237−44

doi: 10.1007/s00468-016-1361-1
[66]

Meinzer FC, Bond BJ, Karanian JA. 2008. Biophysical constraints on leaf expansion in a tall conifer. Tree Physiology 28:197−206

doi: 10.1093/treephys/28.2.197
[67]

Han Q. 2011. Height-related decreases in mesophyll conductance, leaf photosynthesis and compensating adjustments associated with leaf nitrogen concentrations in Pinus densiflora. Tree Physiology 31:976−84

doi: 10.1093/treephys/tpr016
[68]

Marshall JD, Monserud RA. 2003. Foliage height influences specific leaf area of three conifer species. Canadian Journal of Forest Research 33:164−70

doi: 10.1139/x02-158