[1] |
Gramazio P, Alonso D, Arrones A, Villanueva G, Plazas M, et al. 2023. Conventional and new genetic resources for an eggplant breeding revolution. Journal of Experimental Botany 74:6285−305 doi: 10.1093/jxb/erad260 |
[2] |
Naegele RP, Boyle S, Quesada-Ocampo LM, Hausbeck MK. 2014. Genetic diversity, population structure, and resistance to Phytophthora capsici of a worldwide collection of eggplant germplasm. PLoS ONE 9:e95930 doi: 10.1371/journal.pone.0095930 |
[3] |
Agregán R, Munekata PES, Feng X, Astray G, Gullón B, et al. 2021. Recent advances in the extraction of polyphenols from eggplant and their application in foods. LWT 146:111381 doi: 10.1016/j.lwt.2021.111381 |
[4] |
Martínez-Ispizua E, Calatayud Á, Marsal JI, Mateos-Fernández R, Díez MJ, et al. 2021. Phenotyping local eggplant varieties: commitment to biodiversity and nutritional quality preservation. Frontiers in Plant Science 12:696272 doi: 10.3389/fpls.2021.696272 |
[5] |
Lv Z, Jin Q, Li Z, Li T, Wang Y, et al. 2023. Fine mapping and candidate gene analysis of the Gv1 locus controlling green-peel color in eggplant (Solanum melongena L.). Horticulturae 9:888 doi: 10.3390/horticulturae9080888 |
[6] |
Ro N, Haile M, Kim B, Cho GT, Lee J, et al. 2022. Genome-wide association study for agro-morphological traits in eggplant core collection. Plants 11:2627 doi: 10.3390/plants11192627 |
[7] |
Zhou X, Liu S, Yang Y, Liu J, Zhuang Y. 2022. Integrated metabolome and transcriptome analysis reveals a regulatory network of fruit peel pigmentation in eggplant (Solanum melongena L.). International Journal of Molecular Sciences 23:13475 doi: 10.3390/ijms232113475 |
[8] |
Condurache NNL, Croitoru C, Enachi E, Bahrim GE, Stănciuc N, et al. 2021. Eggplant peels as a valuable source of anthocyanins: extraction, thermal stability and biological activities. Plants 10:577 doi: 10.3390/plants10030577 |
[9] |
Ferarsa S, Zhang W, Moulai-Mostefa N, Ding L, Jaffrin MY, et al. 2018. Recovery of anthocyanins and other phenolic compounds from purple eggplant peels and pulps using ultrasonic-assisted extraction. Food and Bioproducts Processing 109:19−28 doi: 10.1016/j.fbp.2018.02.006 |
[10] |
Iglesias I, Echeverría G, Lopez ML. 2012. Fruit color development, anthocyanin content, standard quality, volatile compound emissions and consumer acceptability of several 'Fuji' apple strains. Scientia Horticulturae 137:138−47 doi: 10.1016/j.scienta.2012.01.029 |
[11] |
Lee C, Lee J, Lee J. 2022. Relationship of fruit color and anthocyanin content with related gene expression differ in strawberry cultivars during shelf life. Scientia Horticulturae 301:111109 doi: 10.1016/j.scienta.2022.111109 |
[12] |
Wrolstad RE, Durst RW, Lee J. 2005. Tracking color and pigment changes in anthocyanin products. Trends in Food Science & Technology 16:423−28 doi: 10.1016/j.jpgs.2005.03.019 |
[13] |
Gu K, Wang C, Hu D, Hao Y. 2019. How do anthocyanins paint our horticultural products? Scientia Horticulturae 249:257−62 doi: 10.1016/j.scienta.2019.01.034 |
[14] |
Jaakola L. 2013. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science 18:477−83 doi: 10.1016/j.tplants.2013.06.003 |
[15] |
Saigo T, Wang T, Watanabe M, Tohge T. 2020. Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. Current Opinion in Plant Biology 55:93−99 doi: 10.1016/j.pbi.2020.04.001 |
[16] |
Zhang Y, Butelli E, Martin C. 2014. Engineering anthocyanin biosynthesis in plants. Current Opinion in Plant Biology 19:81−90 doi: 10.1016/j.pbi.2014.05.011 |
[17] |
Khusnutdinov E, Sukhareva A, Panfilova M, Mikhaylova E. 2021. Anthocyanin biosynthesis genes as model genes for genome editing in plants. International Journal of Molecular Sciences 22:8752 doi: 10.3390/ijms22168752 |
[18] |
Liu Y, Tikunov Y, Schouten RE, Marcelis LFM, Visser RGF, et al. 2018. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: a review. Frontiers in Chemistry 6:52 doi: 10.3389/fchem.2018.00052 |
[19] |
Yan H, Pei X, Zhang H, Li X, Zhang X, et al. 2021. MYB-mediated regulation of anthocyanin biosynthesis. International Journal of Molecular Sciences 22:3103 doi: 10.3390/ijms22063103 |
[20] |
He Y, Chen H, Zhou L, Liu Y, Chen H. 2019. Comparative transcription analysis of photosensitive and non-photosensitive eggplants to identify genes involved in dark regulated anthocyanin synthesis. BMC Genomics 20:678 doi: 10.1186/s12864-019-6023-4 |
[21] |
Li L, He Y, Ge H, Liu Y, Chen H. 2021. Functional characterization of SmMYB86, a negative regulator of anthocyanin biosynthesis in eggplant (Solanum melongena L.). Plant Science 302:110696 doi: 10.1016/j.plantsci.2020.110696 |
[22] |
Yang G, Li L, Wei M, Li J, Yang F. 2022. SmMYB113 is a key transcription factor responsible for compositional variation of anthocyanin and color diversity among eggplant peels. Frontiers in Plant Science 13:843996 doi: 10.3389/fpls.2022.843996 |
[23] |
Zhang Y, Hu Z, Chu G, Huang C, Tian S, et al. 2014. Anthocyanin accumulation and molecular analysis of anthocyanin biosynthesis-associated genes in eggplant (Solanum melongena L.). Journal of Agricultural and Food Chemistry 62:2906−12 doi: 10.1021/jf404574c |
[24] |
Fang Z, Lin-Wang K, Jiang C, Zhou D, Lin Y, et al. 2021. Postharvest temperature and light treatments induce anthocyanin accumulation in peel of 'Akihime'plum (Prunus salicina Lindl.) via transcription factor PsMYB10.1. Postharvest Biology and Technology 179:111592 doi: 10.1016/j.postharvbio.2021.111592 |
[25] |
Lin-Wang K, Micheletti D, Palmer J, Volz R, Lozano L, et al. 2011. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant, Cell & Environment 34:1176−90 doi: 10.1111/j.1365-3040.2011.02316.x |
[26] |
Liu Y, Schouten RE, Tikunov Y, Liu X, Visser RGF, et al. 2022. Blue light increases anthocyanin content and delays fruit ripening in purple pepper fruit. Postharvest Biology and Technology 192:112024 doi: 10.1016/j.postharvbio.2022.112024 |
[27] |
Yu L, Sun Y, Zhang X, Chen M, Wu T, et al. 2022. ROS1 promotes low temperature-induced anthocyanin accumulation in apple by demethylating the promoter of anthocyanin-associated genes. Horticulture Research 9:uhac007 doi: 10.1093/hr/uhac007 |
[28] |
Albert NW, Lewis DH, Zhang H, Irving LJ, Jameson PE, et al. 2009. Light-induced vegetative anthocyanin pigmentation in Petunia. Journal of Experimental Botany 60:2191−202 doi: 10.1093/jxb/erp097 |
[29] |
Jia N, Wang J, Wang Y, Ye W, Liu J, et al. 2021. The light-induced WD40-repeat transcription factor DcTTG1 regulates anthocyanin biosynthesis in Dendrobium candidum. Frontiers in Plant Science 12:633333 doi: 10.3389/fpls.2021.633333 |
[30] |
Ma Y, Ma X, Gao X, Wu W, Zhou B. 2021. Light induced regulation pathway of anthocyanin biosynthesis in plants. International Journal of Molecular Sciences 22:11116 doi: 10.3390/ijms222011116 |
[31] |
Takos AM, Jaffé FW, Jacob SR, Bogs J, Robinson SP, et al. 2006. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology 142:1216−32 doi: 10.1104/pp.106.088104 |
[32] |
Guo X, Wang Y, Zhai Z, Huang T, Zhao D, et al. 2018. Transcriptomic analysis of light-dependent anthocyanin accumulation in bicolored cherry fruits. Plant Physiology and Biochemistry 130:663−77 doi: 10.1016/j.plaphy.2018.08.016 |
[33] |
Huang H, Li Y, Dai S. 2017. Investigation of germplasm in chrysanthemum cultivars with light-independent coloration. Acta Horticulturae 1185:55−64 doi: 10.17660/ActaHortic.2017.1185.9 |
[34] |
Shi B, Wu H, Zheng B, Qian M, Gao A, et al. 2021. Analysis of light-independent anthocyanin accumulation in Mango (Mangifera indica L.). Horticulturae 7:423 doi: 10.3390/horticulturae7110423 |
[35] |
Yang J, Chen Y, Kawabata S, Li Y, Wang Y. 2017. Identification of light-independent anthocyanin biosynthesis mutants induced by ethyl methane sulfonate in turnip "Tsuda" (Brassica rapa). International Journal of Molecular Sciences 18:1288 doi: 10.3390/ijms18071288 |
[36] |
Zheng Y, Li J, Xin H, Wang N, Guan L, et al. 2013. Anthocyanin profile and gene expression in berry skin of two red Vitis vinifera grape cultivars that are sunlight dependent versus sunlight independent. Australian Journal of Grape and Wine Research 19:238−48 doi: 10.1111/ajgw.12023 |
[37] |
Xiang C, Zhang W, Luo S, Zhao J, Zhang T, et al. 2015. Genetic analysis on fruit color under calyx and correlation analysis of SSR markers in eggplant. Journal of Agricultural University of Hebei 38:50−55 doi: 10.13320/j.cnki.jauh.2015.0083 |
[38] |
Zhang J, Li B, Gao X, Pan X, Wu Y. 2022. Integrating transcriptomic and metabolomic analyses to explore the effect of color under fruit calyx on that of fruit apex in eggplant (Solanum melongena L.). Frontiers in Genetics 13:889461 doi: 10.3389/fgene.2022.889461 |
[39] |
Li J, Ren L, Gao Z, Jiang M, Liu Y, et al. 2017. Combined transcriptomic and proteomic analysis constructs a new model for light-induced anthocyanin biosynthesis in eggplant (Solanum melongena L.). Plant, Cell & Environment 40:3069−87 doi: 10.1111/pce.13074 |
[40] |
Li J, He Y, Zhou L, Liu Y, Jiang M, et al. 2018. Transcriptome profiling of genes related to light-induced anthocyanin biosynthesis in eggplant (Solanum melongena L.) before purple color becomes evident. BMC Genomics 19:201 doi: 10.1186/s12864-018-4587-z |
[41] |
Toppino L, Barchi L, Lo Scalzo R, Palazzolo E, Francese G, et al. 2016. Mapping quantitative trait loci affecting biochemical and morphological fruit properties in eggplant (Solanum melongena L.). Frontiers in Plant Science 7:256 doi: 10.3389/fpls.2016.00256 |
[42] |
Zhang X, He Y, Liu Y, Chen H. 2021. Development and validation of molecular marker for photosensitivity of anthocyanin production in eggplant fruit. Journal of Nanjing Agricultural University 44:637−45 |
[43] |
Mangino G, Arrones A, Plazas M, Pook T, Prohens J, et al. 2022. Newly developed MAGIC population allows identification of strong associations and candidate genes for anthocyanin pigmentation in eggplant. Frontiers in Plant Science 13:847789 doi: 10.3389/fpls.2022.847789 |
[44] |
Qiao J, Liu J, Li S, Wang L. 2022. Prediction of fruit color genes under the calyx of eggplant based on genome-wide resequencing in an extreme mixing pool. Acta Horticulturae Sinica 49:613−21 doi: 10.16420/j.issn.0513-353x.2021-0018 |
[45] |
He Y, Li S, Dong Y, Zhang X, Li D, et al. 2022. Fine mapping and characterization of the dominant gene SmFTSH10 conferring non-photosensitivity in eggplant (Solanum melongena L.). Theoretical and Applied Genetics 135:2187−96 doi: 10.1007/s00122-022-04078-z |
[46] |
Murray MG, Thompson WF. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8:4321−26 doi: 10.1093/nar/8.19.4321 |
[47] |
Li D, Qian J, Li W, Yu N, Gan G, et al. 2021. A high-quality genome assembly of the eggplant provides insights into the molecular basis of disease resistance and chlorogenic acid synthesis. Molecular Ecology Resources 21:1274−86 doi: 10.1111/1755-0998.13321 |
[48] |
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows – Wheeler transform. Bioinformatics 25:1754−60 doi: 10.1093/bioinformatics/btp324 |
[49] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20:1297−303 doi: 10.1101/gr.107524.110 |
[50] |
Hill JT, Demarest BL, Bisgrove BW, Gorsi B, Su YC, et al. 2013. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Research 23:687−97 doi: 10.1101/gr.146936.112 |
[51] |
Gao H, Jiang H, Cui J, You C, Li Y. 2021. Review: the effects of hormones and environmental factors on anthocyanin biosynthesis in apple. Plant Science 312:111024 doi: 10.1016/j.plantsci.2021.111024 |
[52] |
Gao-Takai M, Katayama-Ikegami A, Matsuda K, Shindo H, Uemae S, et al. 2019. A low temperature promotes anthocyanin biosynthesis but does not accelerate endogenous abscisic acid accumulation in red-skinned grapes. Plant Science 283:165−76 doi: 10.1016/j.plantsci.2019.01.015 |
[53] |
Liu P, Wang Y, Meng J, Zhang X, Zhou J, et al. 2019. Transcriptome sequencing and expression analysis of genes related to anthocyanin biosynthesis in leaves of Malus 'Profusion' infected by Japanese apple rust. Forests 10:665 doi: 10.3390/f10080665 |
[54] |
Long L, Liu J, Gao Y, Xu F, Zhao J, et al. 2019. Flavonoid accumulation in spontaneous cotton mutant results in red coloration and enhanced disease resistance. Plant Physiology and Biochemistry 143:40−49 doi: 10.1016/j.plaphy.2019.08.021 |
[55] |
Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, et al. 2008. Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytologist 179:1004−16 doi: 10.1111/j.1469-8137.2008.02511.x |
[56] |
Nguyen NH, Lee H. 2016. MYB-related transcription factors function as regulators of the circadian clock and anthocyanin biosynthesis in Arabidopsis. Plant Signaling & Behavior 11:e1139278 doi: 10.1080/15592324.2016.1139278 |
[57] |
Yu D, Wei W, Fan Z, Chen J, You Y, et al. 2023. VabHLH137 promotes proanthocyanidin and anthocyanin biosynthesis and enhances resistance to Colletotrichum gloeosporioides in grapevine. Horticulture Research 10:uhac261 doi: 10.1093/hr/uhac261 |
[58] |
Gonzalez A, Zhao M, Leavitt JM, Lloyd AM. 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal 53:814−27 doi: 10.1111/j.1365-313X.2007.03373.x |
[59] |
Oshima Y, Shikata M, Koyama T, Ohtsubo N, Mitsuda N, et al. 2013. MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri. The Plant Cell 25:1609−24 doi: 10.1105/tpc.113.110783 |
[60] |
Oshima Y, Mitsuda N. 2013. The MIXTA-like transcription factor MYB16 is a major regulator of cuticle formation in vegetative organs. Plant Signaling & Behavior 8:e26826 doi: 10.4161/psb.26826 |
[61] |
Wang C, Han P, Zhao Y, Yu J, You C, et al. 2021. Genome-wide analysis of auxin response factor (ARF) genes and functional identification of MdARF2 reveals the involvement in the regulation of anthocyanin accumulation in apple. New Zealand Journal of Crop and Horticultural Science 49:78−91 doi: 10.1080/01140671.2020.1779756 |
[62] |
Wang Y, Wang N, Xu H, Jiang S, Fang H, et al. 2018. Auxin regulates anthocyanin biosynthesis through the Aux/IAA–ARF signaling pathway in apple. Horticulture Research 5:59 doi: 10.1038/s41438-018-0068-4 |
[63] |
Kami C, Allenbach L, Zourelidou M, Ljung K, Schütz F, et al. 2014. Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport. The Plant Journal 77:393−403 doi: 10.1111/tpj.12395 |
[64] |
Lariguet P, Schepens I, Hodgson D, Pedmale UV, Trevisan M, et al. 2006. PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism. Proceedings of the National Academy of Sciences of the United States of America 103:10134−39 doi: 10.1073/pnas.0603799103 |
[65] |
Petersen J, Inoue SI, Kelly SM, Sullivan S, Kinoshita T, et al. 2017. Functional characterization of a constitutively active kinase variant of Arabidopsis phototropin 1. Journal of Biological Chemistry 292:13843−52 doi: 10.1074/jbc.M117.799643 |
[66] |
Cheng Y, Qin G, Dai X, Zhao Y. 2007. NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 104:18825−29 doi: 10.1073/pnas.0708506104 |
[67] |
Wan Y, Jasik J, Wang L, Hao H, Volkmann D, et al. 2012. The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism. The Plant Cell 24:551−65 doi: 10.1105/tpc.111.094284 |
[68] |
Motchoulski A, Liscum E. 1999. Arabidopsis NPH3: a NPH1 photoreceptor-interacting protein essential for phototropism. Science 286:961−64 doi: 10.1126/science.286.5441.961 |
[69] |
Guo J, Qi F, Qin L, Zhang M, Sun Z, et al. 2022. Mapping of a QTL associated with sucrose content in peanut kernels using BSA-seq. Frontiers in Genetics 13:1089389 doi: 10.3389/fgene.2022.1089389 |
[70] |
Ochar K, Su B, Zhou M, Liu Z, Gao H, et al. 2022. Identification of the genetic locus associated with the crinkled leaf phenotype in a soybean (Glycine max L.) mutant by BSA-Seq technology. Journal of Integrative Agriculture 21:3524−39 doi: 10.1016/j.jia.2022.08.095 |
[71] |
Sun J, Wang J, Guo W, Yin T, Zhang S, et al. 2021. Identification of alkali-tolerant candidate genes using the NGS-assisted BSA strategy in rice. Molecular Breeding 41:44 doi: 10.1007/s11032-021-01228-x |
[72] |
Zhu J, Chen J, Gao F, Xu C, Wu H, et al. 2017. Rapid mapping and cloning of the virescent-1 gene in cotton by bulked segregant analysis–next generation sequencing and virus-induced gene silencing strategies. Journal of Experimental Botany 68:4125−35 doi: 10.1093/jxb/erx240 |
[73] |
Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, et al. 1998. Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theoretical and Applied Genetics 97:381−97 doi: 10.1007/s001220050908 |
[74] |
Chaim AB, Paran I, Grube RC, Jahn M, Van Wijk R, et al. 2001. QTL mapping of fruit-related traits in pepper (Capsicum annuum). Theoretical and Applied Genetics 102:1016−28 doi: 10.1007/s001220000461 |
[75] |
Paran I, Zamir D. 2003. Quantitative traits in plants: beyond the QTL. Trends in Genetics 19:303−06 doi: 10.1016/S0168-9525(03)00117-3 |
[76] |
Quarrie SA, Pekic Quarrie S, Radosevic R, Rancic D, Kaminska A, et al. 2006. Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. Journal of Experimental Botany 57:2627−37 doi: 10.1093/jxb/erl026 |
[77] |
Katuuramu DN, Levi A, Wechter WP. 2023. Genome-wide association study of soluble solids content, flesh color, and fruit shape in citron watermelon. The Plant Genome Early View:e20391 doi: 10.1002/tpg2.20391 |
[78] |
Larsen B, Migicovsky Z, Jeppesen AA, Gardner KM, Toldam-Andersen TB, et al. 2019. Genome-wide association studies in apple reveal loci for aroma volatiles, sugar composition, and harvest date. The Plant Genome 12:180104 doi: 10.3835/plantgenome2018.12.0104 |
[79] |
Wu L, Wang H, Liu S, Liu M, Liu J, et al. 2022. Mapping of CaPP2C35 involved in the formation of light-green immature pepper (Capsicum annuum L.) fruits via GWAS and BSA. Theoretical and Applied Genetics 135:591−604 doi: 10.1007/s00122-021-03987-9 |
[80] |
Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, et al. 2012. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. The Plant Cell 24:1242−55 doi: 10.1105/tpc.111.095232 |
[81] |
Castillejo C, Waurich V, Wagner H, Ramos R, Oiza N, et al. 2020. Allelic variation of MYB10 is the major force controlling natural variation in skin and flesh color in strawberry (Fragaria spp.) fruit. The Plant Cell 32:3723−49 doi: 10.1105/tpc.20.00474 |
[82] |
Chiu L, Zhou X, Burke S, Wu X, Prior RL, et al. 2010. The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiology 154:1470−80 doi: 10.1104/pp.110.164160 |
[83] |
Cone KC, Cocciolone SM, Moehlenkamp CA, Weber T, Drummond BJ, et al. 1993. Role of the regulatory gene pl in the photocontrol of maize anthocyanin pigmentation. The Plant Cell 5:1807−16 doi: 10.1105/tpc.5.12.1807 |
[84] |
Espley RV, Brendolise C, Chagné D, Kutty-Amma S, Green S, et al. 2009. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. The Plant Cell 21:168−83 doi: 10.1105/tpc.108.059329 |
[85] |
He Q, Wu J, Xue Y, Zhao W, Li R, et al. 2020. The novel gene BrMYB2, located on chromosome A07, with a short intron 1 controls the purple-head trait of Chinese cabbage (Brassica rapa L.). Horticulture Research 7:97 |
[86] |
Jung S, Venkatesh J, Kang MY, Kwon JK, Kang BC. 2019. A non-LTR retrotransposon activates anthocyanin biosynthesis by regulating a MYB transcription factor in Capsicum annuum. Plant Science 287:110181 doi: 10.1016/j.plantsci.2019.110181 |