[1]

Jiang Y, Huang B. 2001. Osmotic adjustment and root growth associated with drought preconditioning-enhanced heat tolerance in Kentucky bluegrass. Crop Science 41:1168−73

doi: 10.2135/cropsci2001.4141168x
[2]

Hilker M, Schmülling T. 2019. Stress priming, memory, and signalling in plants. Plant, Cell & Environment 42:753−61

doi: 10.1111/pce.13526
[3]

Forner A, Valladares F, Aranda I. 2018. Mediterranean trees coping with severe drought: avoidance might not be safe. Environmental and Experimental Botany 155:529−40

doi: 10.1016/j.envexpbot.2018.08.006
[4]

Tomasella M, Nardini A, Hesse BD, Machlet A, Matyssek R, et al. 2019. Close to the edge: effects of repeated severe drought on stem hydraulics and non-structural carbohydrates in European beech saplings. Tree Physiology 39:717−28

doi: 10.1093/treephys/tpy142
[5]

Abid M, Shao Y, Liu S, Wang F, Gao J, et al. 2017. Pre-drought priming sustains grain development under post-anthesis drought stress by regulating the growth hormones in winter wheat (Triticum aestivum L.). Planta 246:509−24

doi: 10.1007/s00425-017-2698-4
[6]

Xu Z, Zhou G, Shimizu H. 2009. Are plant growth and photosynthesis limited by pre-drought following rewatering in grass? Journal of Experimental Botany 60:3737−49

doi: 10.1093/jxb/erp216
[7]

Zhao W, Sun Y, Liu X. 2016. Effects of drought-rewatering-drought on photosynthesis and growth of maize. Chinese Journal of Plant Ecology 40:594−603

doi: 10.17521/cjpe.2015.0345
[8]

Nosalewicz A, Siecińska J, Kondracka K, Nosalewicz M. 2018. The functioning of Festuca arundinacea and Lolium perenne under drought is improved to a different extend by the previous exposure to water deficit. Environmental and Experimental Botany 156:271−78

doi: 10.1016/j.envexpbot.2018.09.016
[9]

Xu Z, Zhou G, Shimizu H. 2010. Plant responses to drought and rewatering. Plant Signaling & Behavior 5:649−54

doi: 10.4161/psb.5.6.11398
[10]

Busso CA, Mueller RJ, Richards JH. 1989. Effects of drought and defoliation on bud viability in two caespitose grasses. Annals of Botany 63:477−85

doi: 10.1093/oxfordjournals.aob.a087768
[11]

Busso CA, Richards JH. 1995. Drought and clipping effects on tiller demography and growth of two tussock grasses in Utah. Journal of Arid Environments 29:239−51

doi: 10.1016/S0140-1963(05)80093-X
[12]

Harrison MA, Kaufman PB. 1980. Hormonal regulation of lateral bud (tiller) release in oats (Avena sativa L.). Plant Physiology 66:1123−27

doi: 10.1104/pp.66.6.1123
[13]

Li X, Qian Q, Fu Z, Wang Y, Xiong G, et al. 2003. Control of tillering in rice. Nature 422:618−21

doi: 10.1038/nature01518
[14]

Tantikanjana T, Yong JWH, Letham DS, Griffith M, Hussain M, et al. 2001. Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. Genes & Development 15:1577−88

doi: 10.1101/gad.887301
[15]

Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S, et al. 2011. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. The Plant Cell 23:3276−87

doi: 10.1105/tpc.111.088765
[16]

Sato Y, Hong SK, Tagiri A, Kitano H, Yamamoto N, et al. 1996. A rice homeobox gene, OSH1, is expressed before organ differentiation in a specific region during early embryogenesis. Proceedings of the National Academy of Sciences of the United States of America 93:8117−22

doi: 10.1073/pnas.93.15.8117
[17]

Tanaka W, Tsuda K, Hirano HY. 2019. Class I KNOX gene OSH1 is indispensable for axillary meristem development in rice. Cytologia 84:343−46

doi: 10.1508/cytologia.84.343
[18]

Hubbard L, McSteen P, Doebley J, Hake S. 2002. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics 162:1927−35

doi: 10.1093/genetics/162.4.1927
[19]

Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, et al. 2003. The OsTB1 gene negatively regulates lateral branching in rice. The Plant Journal 33:513−20

doi: 10.1046/j.1365-313X.2003.01648.x
[20]

Rae GM, David K, Wood M. 2013. The dormancy marker DRM1/ARP associated with dormancy but a broader role in planta. Developmental Biology Journal 2013:632524

doi: 10.1155/2013/632524
[21]

Shimizu S, Mori H. 1998. Changes in protein interactions of cell cycle-related genes during the dormancy-to-growth transition in pea axillary buds. Plant and Cell Physiology 39:1073−79

doi: 10.1093/oxfordjournals.pcp.a029304
[22]

Souza BM, Molfetta-Machado JB, Freschi L, Figueira A, Purgatto E, et al. 2010. Axillary bud development in pineapple nodal segments correlates with changes on cell cycle gene expression, hormone level, and sucrose and glutamate contents. In Vitro Cellular & Developmental Biology - Plant 46:281−88

doi: 10.1007/s11627-009-9276-9
[23]

Wang Y, Ren T, Lu J, Ming R, Li P, et al. 2016. Heterogeneity in rice tillers yield associated with tillers formation and nitrogen fertilizer. Agronomy Journal 108:1717−25

doi: 10.2134/agronj2015.0587
[24]

Bahmani I, Varlet-Grancher C, Hazard L, Matthew C, Betin M, et al. 2000. Post-flowering tillering in contrasting light environments of two New Zealand perennial ryegrass cultivars with different perennation strategies. Grass and Forage Science 55:367−71

doi: 10.1046/j.1365-2494.2000.00228.x
[25]

Zhuang L, Wang J, Huang B. 2017. Drought inhibition of tillering in Festuca arundinacea associated with axillary bud development and strigolactone signaling. Environmental and Experimental Botany 142:15−23

doi: 10.1016/j.envexpbot.2017.07.017
[26]

Beveridge CA, Kyozuka J. 2010. New genes in the strigolactone-related shoot branching pathway. Current Opinion in Plant Biology 13:34−39

doi: 10.1016/j.pbi.2009.10.003
[27]

Dun EA, Brewer PB, Beveridge CA. 2009. Strigolactones: discovery of the elusive shoot branching hormone. Trends in Plant Science 14:364−72

doi: 10.1016/j.tplants.2009.04.003
[28]

Leyser O. 2009. The control of shoot branching: an example of plant information processing. Plant, Cell & Environment 32:694−703

doi: 10.1111/j.1365-3040.2009.01930.x
[29]

Zha M, Zhao Y, Wang Y, Chen B, Tan Z. 2022. Strigolactones and cytokinin interaction in buds in the control of rice tillering. Frontiers in Plant Science 13:837136

doi: 10.3389/fpls.2022.837136
[30]

Liu X, Hu Q, Yan J, Sun K, Liang Y, et al. 2020. ζ-carotene isomerase suppresses tillering in rice through the coordinated biosynthesis of strigolactone and abscisic acid. Molecular Plant 13:1784−801

doi: 10.1016/j.molp.2020.10.001
[31]

González-Grandío E, Poza-Carrión C, Sorzano COS, Cubas P. 2013. BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis. The Plant Cell 25:834−50

doi: 10.1105/tpc.112.108480
[32]

Avramova Z. 2019. Defence-related priming and responses to recurring drought: two manifestations of plant transcriptional memory mediated by the ABA and JA signalling pathways. Plant, Cell & Environment 42:983−97

doi: 10.1111/pce.13458
[33]

Brito C, Dinis LT, Ferreira H, Moutinho-Pereira J, Correia CM. 2020. Foliar pre-treatment with abscisic acid enhances olive tree drought adaptability. Plants 9:341

doi: 10.3390/plants9030341
[34]

Zhang X, Wang X, Zhuang L, Gao Y, Huang B. 2019. Abscisic acid mediation of drought priming-enhanced heat tolerance in tall fescue (Festuca arundinacea) and Arabidopsis. Physiologia Plantarum 167:488−501

doi: 10.1111/ppl.12975
[35]

Liu R, Finlayson SA. 2019. Sorghum tiller bud growth is repressed by contact with the overlying leaf. Plant, Cell & Environment 42:2120−32

doi: 10.1111/pce.13548
[36]

Hoagland DR and Arnon DI. 1950. The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station 347:1−32

[37]

Huang L, Yan H, Jiang X, Yin G, Zhang X, et al. 2014. Identification of candidate reference genes in perennial ryegrass for quantitative RT-PCR under various abiotic stress conditions. PLoS ONE 9:e93724

doi: 10.1371/journal.pone.0093724
[38]

Pan X, Welti R, Wang X. 2010. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography–mass spectrometry. Nature Protocols 5:986−92

doi: 10.1038/nprot.2010.37
[39]

Zhuang L, Ge Y, Wang J, Yu J, Yang Z, et al. 2019. Gibberellic acid inhibition of tillering in tall fescue involving crosstalks with cytokinins and transcriptional regulation of genes controlling axillary bud outgrowth. Plant Science 287:110168

doi: 10.1016/j.plantsci.2019.110168
[40]

Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, et al. 2003. LAX and SPA: major regulators of shoot branching in rice. Proceedings of the National Academy of Sciences of the United States of America 100:11765−70

doi: 10.1073/pnas.1932414100
[41]

Zhang Z, Sun X, Ma X, Xu B, Zhao Y, et al. 2021. GNP6, a novel allele of MOC1, regulates panicle and tiller development in rice. The Crop Journal 9:57−67

doi: 10.1016/j.cj.2020.04.011
[42]

Lee J, Han CT, Hur Y. 2013. Molecular characterization of the Brassica rapa auxin-repressed, superfamily genes, BrARP1 and BrDRM1. Molecular Biology Reports 40:197−209

doi: 10.1007/s11033-012-2050-9
[43]

Kebrom TH, Chandler PM, Swain SM, King RW, Richards RA, et al. 2012. Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiology 160:308−18

doi: 10.1104/pp.112.197954
[44]

Tatematsu K, Ward S, Leyser O, Kamiya Y, Nambara E. 2005. Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis. Plant Physiology 138:757−66

doi: 10.1104/pp.104.057984
[45]

Wood M, Rae GM, Wu R, Walton EF, Xue B, et al. 2013. Actinidia DRM1- an intrinsically disordered protein whose mRNA expression is inversely correlated with spring budbreak in kiwifruit. PLoS ONE 8:e57354

doi: 10.1371/journal.pone.0057354
[46]

Zheng Y, Ma X, Chi D, Gao A, Li L, et al. 2013. Comparative proteomic analysis of spike-development inhibited and normal tillers of wheat 3558. Journal of Integrative Agriculture 12:398−405

doi: 10.1016/S2095-3119(13)60239-7
[47]

Seto Y, Yamaguchi S. 2014. Strigolactone biosynthesis and perception. Current Opinion in Plant Biology 21:1−6

doi: 10.1016/j.pbi.2014.06.001
[48]

Guo S, Xu Y, Liu H, Mao Z, Zhang C, et al. 2013. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nature Communications 4:1566

doi: 10.1038/ncomms2542
[49]

Gaudin ACM, McClymont SA, Soliman SSM, Raizada MN. 2014. The effect of altered dosage of a mutant allele of Teosinte branched 1 (tb1-ref) on the root system of modern maize. BMC Genetics 15:23

doi: 10.1186/1471-2156-15-23
[50]

Wang X, Li Q, Xie J, Huang M, Cai J, et al. 2021. Abscisic acid and jasmonic acid are involved in drought priming-induced tolerance to drought in wheat. The Crop Journal 9:120−32

doi: 10.1016/j.cj.2020.06.002
[51]

Wang X, Zhang J, Song J, Huang M, Cai J, et al. 2020. Abscisic acid and hydrogen peroxide are involved in drought priming-induced drought tolerance in wheat (Triticum aestivum L.). Plant Biology 22:1113−22

doi: 10.1111/plb.13143
[52]

Luo L, Takahashi M, Kameoka H, Qin R, Shiga T, et al. 2019. Developmental analysis of the early steps in strigolactone-mediated axillary bud dormancy in rice. The Plant Journal 97:1006−21

doi: 10.1111/tpj.14266
[53]

Irene S, Otto M, Delker C, Kirmse N, Schmidt D, et al. 2012. ALLENE OXIDE CYCLASE (AOC) gene family members of Arabidopsis thaliana: tissue- and organ-specific promoter activities and in vivo heteromerization. Journal of Experimental Botany 63:6125−38

doi: 10.1093/jxb/ers261
[54]

Wasternack C, Hause B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany 111:1021−58

doi: 10.1093/aob/mct067
[55]

Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico JM, Gimenez-Ibanez S, et al. 2011. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. The Plant Cell 23:701−15

doi: 10.1105/tpc.110.080788
[56]

Gupta N, Prasad VBR, Chattopadhyay S. 2014. LeMYC2 acts as a negative regulator of blue light mediated photomorphogenic growth, and promotes the growth of adult tomato plants. BMC Plant Biology 14:38

doi: 10.1186/1471-2229-14-38
[57]

Shimizu-Sato S, Tanaka M, Mori H. 2009. Auxin–cytokinin interactions in the control of shoot branching. Plant Molecular Biology 69:429−35

doi: 10.1007/s11103-008-9416-3
[58]

Li Y, He Y, Liu Z, Qin T, Wang L, et al. 2022. OsSPL14 acts upstream of OsPIN1b and PILS6b to modulate axillary bud outgrowth by fine-tuning auxin transport in rice. The Plant Journal 111:1167−82

doi: 10.1111/tpj.15884