[1]

Dixon RA. 2001. Natural products and plant disease resistance. Nature 411:843−47

doi: 10.1038/35081178
[2]

Grayer RJ, Harborne JB. 1994. A survey of antifungal compounds from higher plants, 1982–1993. Phytochemistry 37:19−42

doi: 10.1016/0031-9422(94)85005-4
[3]

Geilfus CM. 2019. Plant secondary compounds. In Controlled Environment Horticulture. Cham: Springer International Publishing. pp. 19−33. https://doi.org/10.1007/978-3-030-23197-2_3

[4]

Meyer J, Murray SL, Berger DK. 2016. Signals that stop the rot: regulation of secondary metabolite defences in cereals. Physiological and Molecular Plant Pathology 94:156−66

doi: 10.1016/j.pmpp.2015.05.011
[5]

Grayer RJ, Kokubun T. 2001. Plant–fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry 56:253−63

doi: 10.1016/S0031-9422(00)00450-7
[6]

Hammerschmidt R. 1999. Phytoalexins: what have we learned after 60 years? Annual Review of Phytopathology 37:285−306

doi: 10.1146/annurev.phyto.37.1.285
[7]

Humphreys JM, Chapple C. 2002. Rewriting the lignin roadmap. Current Opinion in Plant Biology 5:224−29

doi: 10.1016/S1369-5266(02)00257-1
[8]

Zhao N, Wang G, Norris A, Chen X, Chen F. 2013. Studying plant secondary metabolism in the age of genomics. Critical Reviews in Plant Sciences 32:369−82

doi: 10.1080/07352689.2013.789648
[9]

Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54:519−46

doi: 10.1146/annurev.arplant.54.031902.134938
[10]

Wang Y, Chantreau M, Sibout R, Hawkins S. 2013. Plant cell wall lignification and monolignol metabolism. Frontiers in Plant Science 4:220

doi: 10.3389/fpls.2013.00220
[11]

Boudet AM, Lapierre C, Grima-Pettenati J. 1995. Biochemistry and molecular biology of lignification. New Phytologist 129:203−36

doi: 10.1111/j.1469-8137.1995.tb04292.x
[12]

Vance CP, Kirk TK, Sherwood RT. 1980. Lignification as a mechanism of disease resistance. Annual Review of Phytopathology 18:259−88

doi: 10.1146/annurev.py.18.090180.001355
[13]

Balasubramanian VK, Rai KM, Thu SW, Hii MM, Mendu V. 2016. Genome-wide identification of multifunctional laccase gene family in cotton (Gossypium spp.); expression and biochemical analysis during fiber development. Scientific Reports 6:34309

doi: 10.1038/srep34309
[14]

Lee MH, Jeon HS, Kim SH, Chung JH, Roppolo D, et al. 2019. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. The EMBO Journal 38:e101948

doi: 10.15252/embj.2019101948
[15]

Miedes E, Vanholme R, Boerjan W, Molina A. 2014. The role of the secondary cell wall in plant resistance to pathogens. Frontiers in Plant Science 5:358

doi: 10.3389/fpls.2014.00358
[16]

Yang C, Liang Y, Qiu D, Zeng H, Yuan J, et al. 2018. Lignin metabolism involves Botrytis cinerea BcGs1-induced defense response in tomato. BMC Plant Biology 18:103

doi: 10.1186/s12870-018-1319-0
[17]

Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. 2010. Lignin biosynthesis and structure. Plant Physiology 153:895−905

doi: 10.1104/pp.110.155119
[18]

Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, et al. 2010. Laccases: a never-ending story. Cellular and Molecular Life Sciences 67:369−85

doi: 10.1007/s00018-009-0169-1
[19]

Mayer AM. 2006. Polyphenol oxidases in plants and fungi: going places? A review Phytochemistry 67:2318−31

doi: 10.1016/j.phytochem.2006.08.006
[20]

Chen F, Dixon RA. 2007. Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnology 25:759−61

doi: 10.1038/nbt1316
[21]

Dien BS, Sarath G, Pedersen JF, Sattler SE, Chen H, et al. 2009. Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents. BioEnergy Research 2:153−64

doi: 10.1007/s12155-009-9041-2
[22]

Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, et al. 2014. Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843

doi: 10.1126/science.1246843
[23]

Lloyd SR, Schoonbeek HJ, Trick M, Zipfel C, Ridout CJ. 2014. Methods to study PAMP-triggered immunity in Brassica species. Molecular Plant-Microbe Interactions 27:286−95

doi: 10.1094/MPMI-05-13-0154-FI
[24]

Donaldson L. 2020. Autofluorescence in plants. Molecules 25:2393

doi: 10.3390/molecules25102393
[25]

Pegg TJ, Gladish DK, Baker RL. 2021. Algae to angiosperms: autofluorescence for rapid visualization of plant anatomy among diverse taxa. Applications in Plant Sciences 9:e11437

doi: 10.1002/aps3.11437
[26]

Zhu Y. 2022. The feasibility of using autofluorescence to detect lignin deposition pattern during defense response in apple roots to Pythium ultimum infection. Horticulturae 8:1085

doi: 10.3390/horticulturae8111085
[27]

Spangelo LPS, Fejer SO, Leuty SJ, Granger RL. 1974. Ottawa 3 clonal apple rootstock. Canadian Journal of Plant Science 54:601−3

doi: 10.4141/cjps74-107
[28]

Pua EC, Chong C. 1984. Requirement for sorbitol (D-glucitol) as carbon source for in vitro propagation of Malus robusta No. 5. Canadian Journal of Botany 62:1545−49

doi: 10.1139/b84-205
[29]

Zhu Y, Saltzgiver M. 2020. A systematic analysis of apple root resistance traits to Pythium ultimum infection and the underpinned molecular regulations of defense activation. Horticulture Research 7:62

doi: 10.1038/s41438-020-0286-4
[30]

Zhu Y, Saltzgiver M, Zhao J. 2018. A phenotyping protocol for detailed evaluation of apple root resistance responses utilizing tissue culture micropropagated apple plants. American Journal of Plant Sciences 9:2183−204

doi: 10.4236/ajps.2018.911158
[31]

Zhu Y, Zhao J, Zhou Z. 2018. Identifying an elite panel of apple rootstock germplasm with contrasting root resistance to Pythium ultimum. Journal of Plant Pathology & Microbiology 9:461

doi: 10.4172/2157-7471.1000461
[32]

Zhu Y, Shin S, Mazzola M. 2016. Genotype responses of two apple rootstocks to infection by Pythium ultimum causing apple replant disease. Canadian Journal of Plant Pathology 38:483−91

doi: 10.1080/07060661.2016.1260640
[33]

Shin S, Zheng P, Fazio G, Mazzola M, Main D, et al. 2016. Transcriptome changes specifically associated with apple (Malus domestica) root defense response during Pythium ultimum infection. Physiological and Molecular Plant Pathology 94:16−26

doi: 10.1016/j.pmpp.2016.03.003
[34]

Höch K, Koopmann B, Von Tiedemann A. 2021. Lignin composition and timing of cell wall lignification are involved in Brassica napus resistance to Sclerotinia sclerotiorum. Molecular and Physiological Plant Pathology 111:1438−48

doi: 10.1094/PHYTO-09-20-0425-R
[35]

Trabucco GM, Matos DA, Lee SJ, Saathoff AJ, Priest HD, et al. 2013. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon. BMC Biotechnology 13:61

doi: 10.1186/1472-6750-13-61
[36]

Yamashita D, Kimura S, Wada M, Takabe K. 2016. Improved Mäule color reaction provides more detailed information on syringyl lignin distribution in hardwood. Journal of Wood Science 62:131−37

doi: 10.1007/s10086-016-1536-9
[37]

Weerdenburg CA, Peterson CA. 1983. Structural changes in phi thickenings during primary and secondary growth in roots. 1. Apple (Pyrus malus) Rosaceae. Canadian Journal of Botany 61:2570−76

doi: 10.1139/b83-282
[38]

Abeynayake SW, Panter S, Mouradov A, Spangenberg G. 2011. A high-resolution method for the localization of proanthocyanidins in plant tissues. Plant Methods 7:13

doi: 10.1186/1746-4811-7-13
[39]

Zhu Y, Fazio G, Mazzola M. 2014. Elucidating the molecular responses of apple rootstock resistant to ARD pathogens: challenges and opportunities for development of genomics-assisted breeding tools. Horticulture Research 1:14043

doi: 10.1038/hortres.2014.43
[40]

Zhu Y, Shao J, Zhou Z, Davis RE. 2017. Comparative transcriptome analysis reveals a preformed defense system in apple root of a resistant genotype of G.935 in the absence of pathogen. International Journal of Plant Genomics 2017:8950746

doi: 10.1155/2017/8950746
[41]

Zhu Y, Shao J, Zhou Z, Davis RE. 2019. Genotype-specific suppression of multiple defense pathways in apple root during infection by Pythium ultimum. Horticulture Research 6:10

doi: 10.1038/s41438-018-0087-1
[42]

Zhu Y, Li G, Singh J, Khan A, Fazio G, et al. 2021. Laccase directed lignification is one of the major processes associated with the defense response against Pythium ultimum infection in apple roots. Frontiers in Plant Science 12:629776

doi: 10.3389/fpls.2021.629776
[43]

Zhu Y, Zhou Z. 2021. The genotype-specific laccase gene expression and lignin deposition patterns in apple root during Pythium ultimum infection. Fruit Research 1:12

doi: 10.48130/frures-2021-0012
[44]

Donaldson LA, Radotic K. 2013. Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood. Journal of Microscopy 251:178−87

doi: 10.1111/jmi.12059
[45]

Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, et al. 2010. The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics 42:833−39

doi: 10.1038/ng.654
[46]

Janick J, Cummins JN, Brown SK, Hemmat M. 1996. Apples. In Fruit Breeding, eds Janick J, Moore JN. New York: Wiley. pp. 1–77.