[1]

Major RT. 1967. The Ginkgo, the most ancient living tree: The resistance of Ginkgo biloba L. to pests accounts in part for the longevity of this species. Science 157:1270−73

doi: 10.1126/science.157.3794.1270
[2]

van Beek TA. 2005. Ginkgolides and bilobalide: Their physical, chromatographic and spectroscopic properties. Bioorganic & Medicinal Chemistry 13(17):5001−12

doi: 10.1016/j.bmc.2005.05.056
[3]

Zhou G, Yao X, Tang Y, Qian D, Su S, et al. 2014. An optimized ultrasound-assisted extraction and simultaneous quantification of 26 characteristic components with four structure types in functional foods from ginkgo seeds. Food Chemistry 15(1):177−85

doi: 10.1016/j.foodchem.2014.02.116
[4]

Boateng ID, Zhang W, Li Y, Saalia FK, Yang X. 2021. Non-thermal pretreatment affects Ginkgo biloba L. seed's product qualities, sensory, and physicochemical properties. Journal of Food Science 12:94−111

doi: 10.1111/1750-3841.15999
[5]

Wang H, Shi M, Cao F, Su E. 2022. Ginkgo biloba seed exocarp: A waste resource with abundant active substances and other components for potential applications. Food Research International 160:111637

doi: 10.1016/j.foodres.2022.111637
[6]

Ahlemeyer B, Krieglstein J. 2003. Neuroprotective effects of Ginkgo biloba extract. Cellular and Molecular Life Sciences CMLS 60:1779−92

doi: 10.1007/s00018-003-3080-1
[7]

Jang HS, Roh SY, Jeong EH, Kim BS, Sunwoo MK. 2015. Ginkgotoxin Induced Seizure Caused by Vitamin B6 Deficiency. Journal of Epilepsy Research 5(2):104−6

doi: 10.14581/jer.15018
[8]

Kobayashi D, Yoshimura T, Johno A, Sasaki K, Wada K. 2011. Toxicity of 4'-O-methylpyridoxine-5'-glucoside in Ginkgo biloba seeds. Food Chemistry 126(3):1198−202

doi: 10.1016/j.foodchem.2010.12.001
[9]

Fan GJ, Wang X, Wu CE, Pan HM, Yang JT, et al. 2017. Effect of heating on the content and composition of ginkgolic acids in ginkgo seeds. Quality Assurance and Safety of Crops & Foods 9(2):195−99

doi: 10.3920/qas2015.0833
[10]

Lim HB, Kim DH. 2018. Effects of roasting conditions on physicochemical properties and antioxidant activities in Ginkgo biloba seeds. Food Science and Biotechnology 27(4):1057−66

doi: 10.1007/s10068-018-0348-7
[11]

Liu J, Chen J, Ye S, Ding Y, Guo S, et al. 2023. Inhibitory action of ginkgolic acid against pathogenic fungi and characterisation of its inhibitory activities on Nigrospora oryzae. Folia Horticulturae 35:49−59

doi: 10.2478/fhort-2023-0004
[12]

Wang Y, Tao Y, Zhang X, Shao S, Han Y, et al. 2019. Metabolic profile of ginkgo kernel juice fermented with lactic aicd bacteria: A potential way to degrade ginkgolic acids and enrich terpene lactones and phenolics. Process Biochemistry 76:25−33

doi: 10.1016/j.procbio.2018.11.006
[13]

Hathout AS, Aly SE. 2014. Biological detoxification of mycotoxins: a review. Annals of Microbiology 64(3):905−19

doi: 10.1007/s13213-014-0899-7
[14]

Delcour J, Ferain T, Deghorain M, Palumbo E, Hols P. 1999. The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie van Leeuwenhoek 76:159−84

doi: 10.1023/A:1002089722581
[15]

Bueno DJ, Casale CH, Pizzolitto RP, Salvano MA, Oliver G. 2007. Physical adsorption of aflatoxin B1 by lactic acid bacteria and Saccharomyces cerevisiae: A theoretical model. Journal of Food Protection 70:2148−54

doi: 10.4315/0362-028X-70.9.2148
[16]

Ge N, Xu J, Peng B, Pan S. 2017. Adsorption mechanism of tenuazonic acid using inactivated lactic acid bacteria. Food Control 82:274−82

doi: 10.1016/j.foodcont.2017.07.009
[17]

Zhang W, Zou M, Wu R, Jiang H, Cao F, et al. 2021. Efficient removal of ginkgotoxin from Ginkgo biloba seed powder by combining endogenous enzymatic hydrolysis with resin adsorption. Journal of the Science of Food and Agriculture 101:1589−97

doi: 10.1002/jsfa.10778
[18]

Kou Z, Wang C. 2022. Preparation of polyhydroxyl adsorbent and its application in the removal of Ginkgolic acids. Industrial Crops and Products 184:114998

doi: 10.1016/j.indcrop.2022.114998
[19]

Estevinho L, Paula AP, Moreira L, Dias LG, Pereira E. 2008. Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food and Chemical Toxicology 46:3774−79

doi: 10.1016/j.fct.2008.09.062
[20]

Li S, Tao Y, Li D, Wen G, Zhou J, et al. 2021. Fermentation of blueberry juices using autochthonous lactic acid bacteria isolated from fruit environment: Fermentation characteristics and evolution of phenolic profiles. Chemosphere 276(1):130090

doi: 10.1016/j.chemosphere.2021.130090
[21]

Wu Y, Han Y, Tao Y, Fan S, Chu D, et al. 2018. Ultrasound assisted adsorption and desorption of blueberry anthocyanins using macroporous resins. Ultrasonics Sonochemistry 48:311−20

doi: 10.1016/j.ultsonch.2018.06.016
[22]

Balestra GM, Misaghi IJ. 1997. Increasing the efficiency of the plate counting method for estimating bacterial diversity. Journal of Microbiological Methods 30(2):111−17

doi: 10.1016/S0167-7012(97)00056-0
[23]

Wu Y, Li S, Tao Y, Li D, Han Y, et al. 2021. Fermentation of blueberry and blackberry juices using Lactobacillus plantarum, Streptococcus thermophilus and Bifidobacterium bifidum: Growth of probiotics, metabolism of phenolics, antioxidant capacity in vitro and sensory evaluation. Food Chemistry 348:129083

doi: 10.1016/j.foodchem.2021.129083
[24]

Gong W, Zhao X, Manickam S, Liu X, Li D, et al. 2023. Impact of cell wall adsorption behaviours on phenolic stability under air drying of blackberry with and without contact ultrasound assistance. Food Hydrocolloids 137(1):108312

doi: 10.1016/j.foodhyd.2022.108312
[25]

Zou M, Zhang W, Wu R, Jiang H, Cao F, et al. 2021. Removal of ginkgotoxin from the Ginkgo biloba seeds powder by adopting membrane separation technology. Journal of Cleaner Production 280:124452

doi: 10.1016/j.jclepro.2020.124452
[26]

Wu Y, Han Y, Tao Y, Li D, Xie G, et al. 2020. In vitro gastrointestinal digestion and fecal fermentation reveal the effect of different encapsulation materials on the release, degradation and modulation of gut microbiota of blueberry anthocyanin extract. Food Research International 132:109098

doi: 10.1016/j.foodres.2020.109098
[27]

Tao Y, Wu P, Dai Y, Luo X, Manickam S, et al. 2022. Bridge between mass transfer behavior and properties of bubbles under two-stage ultrasound-assisted physisorption of polyphenols using macroporous resin. Chemical Engineering Journal 436(1):135158

doi: 10.1016/j.cej.2022.135158
[28]

Franco DSP, Vieillard J, Salau NPG, Dotto GL. 2020. Interpretations on the mechanism of In(III) adsorption onto chitosan and chitin: A mass transfer model approach. Journal of Molecular Liquids 304:112758

doi: 10.1016/j.molliq.2020.112758
[29]

Leyva-Ramos R, Geankoplis CJ. 1985. Model simulation and analysis of surface diffusion of liquids in porous solids. Chemical Engineering Science 40:799−807

doi: 10.1016/0009-2509(85)85032-6
[30]

Ocampo-Perez R, Leyva-Ramos R, Alonso-Davila P, Rivera-Utrilla J, Sánchez-Polo M. 2010. Modeling adsorption rate of pyridine onto granular activated carbon. Chemical Engineering Journal 165:133−41

doi: 10.1016/j.cej.2010.09.002
[31]

Leyva-Ramos R, Ocampo-Perez R, Mendoza-Barron J. 2012. External mass transfer and hindered diffusion of organic compounds in the adsorption on activated carbon cloth. Chemical Engineering Journal 183:141−51

doi: 10.1016/j.cej.2011.12.046
[32]

Podstawczyk D, Witek-Krowiak A. 2016. Novel nanoparticles modified composite eco-adsorbents—a deep insight into kinetics modelling using numerical surface diffusion and artificial neural network models. Chemical Engineering Research and Design 109:1−17

doi: 10.1016/j.cherd.2016.01.008
[33]

Pauletto PS, Moreno-Pérez J, Hernández-Hernández LE, Bonilla-Petriciolet A, Dotto GL, et al. 2021. Novel biochar and hydrochar for the adsorption of 2-nitrophenol from aqueous solutions: An approach using the PVSDM model. Chemosphere 269:128748

doi: 10.1016/j.chemosphere.2020.128748
[34]

Fröhlich AC, Ocampo-Pérez R, Diaz-Blancas V, Salau NPG, Dotto GL. 2018. Three dimensional mass transfer modeling of ibuprofen adsorption on activated carbon prepared by sonication. Chemical Engineering Journal 341:65−74

doi: 10.1016/j.cej.2018.02.020
[35]

Ocampo-Pérez R, Rivera-Utrilla J, Gómez-Pacheco C, Sánchez-Polo M, López-Peñalver JJ. 2012. Kinetic study of tetracycline adsorption on sludge-derived adsorbents in aqueous phase. Chemical Engineering Journal 213:88−96

doi: 10.1016/j.cej.2012.09.072
[36]

Valderrama C, Gamisans X, De las Heras X, Farrán A, Cortina JL. 2008. Sorption kinetics of polycyclic aromatic hydrocarbons removal using granular activated carbon: intraparticle diffusion coefficients. Journal of Hazardous Materials 157:386−96

doi: 10.1016/j.jhazmat.2007.12.119
[37]

Wilke CR, Chang P. 1955. Correlation of diffusion coefficients in dilute solutions. AIChE Journal 1:264−70

doi: 10.1002/aic.690010222
[38]

Furusawa T, Smith JM. 1973. Fluid-particle and intraparticle mass transport rates in slurries. Industrial & Engineering Chemistry Fundamentals 12:197−203

doi: 10.1021/i160046a009
[39]

Tao Y, Wu Y, Han Y, Chemat F, Li D, et al. 2020. Insight into mass transfer during ultrasound-enhanced adsorption/desorption of blueberry anthocyanins on macroporous resins by numerical simulation considering ultrasonic influence on resin properties. Chemical Engineering Journal 380(1):122530

doi: 10.1016/j.cej.2019.122530
[40]

Souza PR, Dotto GL, Salau NPG. 2017. Detailed numerical solution of pore volume and surface diffusion model in adsorption systems. Chemical Engineering Research and Design 122:298−307

doi: 10.1016/j.cherd.2017.04.021
[41]

Xia Y, DeBolt S, Dreyer J, Scott D, Williams MA. 2015. Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Frontiers in Plant Science 6:490

doi: 10.3389/fpls.2015.00490
[42]

Liao W, Shen J, Manickam S, Li S, Tao Y, et al. 2023. Investigation of blueberry juice fermentation by mixed probiotic strains: Regression modeling, machine learning optimization and comparison with fermentation by single strain in the phenolic and volatile profiles. Food Chemistry 405:134982

doi: 10.1016/j.foodchem.2022.134982
[43]

Park JJ, Lee WY. 2021. Adsorption and desorption characteristics of a phenolic compound from Ecklonia cava on macroporous resin. Food Chemistry 338:128150

doi: 10.1016/j.foodchem.2020.128150
[44]

Zhou G, Ma J, Tang Y, Wang X, Zhang J, et al. 2018. Multi-response optimization of ultrasonic assisted enzymatic extraction followed by macroporous resin purification for maximal recovery of flavonoids and ginkgolides from waste Ginkgo biloba fallen leaves. Molecules 23:1029

doi: 10.3390/molecules23051029
[45]

Boateng ID. 2022. A critical review of ginkgolic acids in Ginkgo biloba leaf extract (EGb): toxicity and technologies to remove ginkgolic acids and their promising bioactivities. Food & Function 18:9226−42

doi: 10.1039/d2fo01827f
[46]

Qian Y, Peng Y, Shang E, Zhao M, Yan L, et al. 2017. Metabolic profiling of the hepatotoxicity and nephrotoxicity of Ginkgolic acids in rats using ultra-performance liquid chromatography-high-definition mass spectrometry. Chemico-Biological Interactions 273:11−17

doi: 10.1016/j.cbi.2017.05.020
[47]

Chinese Association of Integrative Medicine, Chinese Medical Doctor Association, National Clinical Research Center for Chinese Medicine Cardiology, Cardiovascular Disease Working Group, Encephalopathy Disease Working Group, et al. 2021. Chinese expert consensus on clinical application of oral Ginkgo biloba preparations (2020). Chinese Journal of Integrative Medicine 27(3):163−69

doi: 10.1007/s11655-021-3289-6
[48]

European Pharmacopoeia Commission. 2010. Monograph: Ginkgo dry extract. Refined and quantified. European Directorate for the Quality of Medicines & Healthcare, Strasbourg, France.

[49]

United States Pharmacopeia. 2010. Thirty-Fourth Revision: Powdered Ginkgo Extract. The United States Pharmacopeial Convention, Rockville, Md, US.

[50]

Dong Q, Cao J, Wu R, Shi T, Zhang W, et al. 2021. Efficient removal of ginkgolic acids from Ginkgo biloba leaves crude extract by using hydrophobic deep eutectic solvents. Industrial Crops and Products 166:113462

doi: 10.1016/j.indcrop.2021.113462
[51]

Hong SJ, Jang JA, Hwang H, Cho MS. 2017. Changes in 4'-O-methylpyridoxine (ginkgotoxin) and antioxidant activity in ginkgo biloba seeds in different cooking conditions. Korean Journal of Food Science and Technology 49(5):532−37

doi: 10.9721/KJFST.2017.49.5.532
[52]

Zou M, Zhang W, Dong Q, Tang C, Cao F, et al. 2021. Submerged fermentation of Ginkgo biloba seed powder using Eurotium cristatum for the development of ginkgo seeds fermented products. Journal of the Science of Food and Agriculture 101(5):1782−91

doi: 10.1002/jsfa.10792
[53]

Leonard W, Zhang P, Ying D, Adhikari B, Fang Z. 2021. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnology advances 49:107763

doi: 10.1016/j.biotechadv.2021.107763
[54]

García-Ruiz A, Cueva C, González-Rompinelli EM, Yuste M, Torres M, et al. 2012. Antimicrobial phenolic extracts able to inhibit lactic acid bacteria growth and wine malolactic fermentation. Food Control 28:212−19

doi: 10.1016/j.foodcont.2012.05.002
[55]

Gao M, Wang D, Deng L, Liu S, Zhang K, et al. 2021. High-crystallinity covalent organic framework synthesized in deep eutectic solvent: Potentially effective adsorbents alternative to macroporous resin for flavonoids. Chemistry of Materials 33:8036−51

doi: 10.1021/acs.chemmater.1c02344
[56]

Chen HY, Ting Y, Kuo HC, Hsieh CW, Hsu HY, et al. 2021. Enzymatic degradation of ginkgolic acids by laccase immobilized on core/shell Fe3O4/nylon composite nanoparticles using novel coaxial electrospraying process. International Journal of Biological Macromolecules 172:270−80

doi: 10.1016/j.ijbiomac.2021.01.004
[57]

Boateng ID, Yang XM, Li YY. 2021. Optimization of infrared-drying parameters for Ginkgo biloba L. seed and evaluation of product quality and bioactivity. Industrial Crops and Products 160:113108

doi: 10.1016/j.indcrop.2020.113108
[58]

Amiri S, Mokarram RR, Khiabani MS, Bari MR, Alizadeh M. 2021. Optimization of food-grade medium for co-production of bioactive substances by Lactobacillus acidophilus LA-5 for explaining pharmabiotic mechanisms of probiotic. Journal of Food Science and Technology 58:1−12

doi: 10.1007/s13197-020-04894-5
[59]

Wang WQ, Zhang JL, Yu Q, Zhou JY, Lu ML, et al. 2021. Structural and compositional changes of whey protein and blueberry juice fermented using Lactobacillus plantarum or Lactobacillus casei during fermentation. RSC Advances 11:26291−302

doi: 10.1039/D1RA04140A
[60]

Caglar B, Cubuk O, Demir E, Coldur F, Catir M, et al. 2015. Characterization of AlFe-pillared Unye bentonite: a study of the surface acidity and catalytic property. Journal of Molecular Structure 1089:59−65

doi: 10.1016/j.molstruc.2015.02.034
[61]

Hernández-Padilla ES, Zárate-Guzmán AI, González-Ortega O, Padilla-Ortega E, Gómez-Durán A, et al. 2022. Elucidation of adsorption mechanisms and mass transfer controlling resistances during single and binary adsorption of caffeic and chlorogenic acids. Environmental Science and Pollution Research 29:26297−311

doi: 10.1007/s11356-021-17737-3
[62]

Ocampo-Pérez R, Leyva-Ramos R, Sanchez-Polo M, Rivera-Utrilla J. 2013. Role of pore volume and surface diffusion in the adsorption of aromatic compounds on activated carbon. Adsorption 19:945−57

doi: 10.1007/s10450-013-9502-y