[1] |
Lindquist S, Craig EA. 1988. The heat-shock proteins. Annual Review of Genetics 22:631−77 doi: 10.1146/annurev.ge.22.120188.003215 |
[2] |
Waters ER, Lee GJ, Vierling E. 1996. Evolution, structure and function of the small heat shock proteins in plants. Journal of Experimental Botany 47:325−38 doi: 10.1093/jxb/47.3.325 |
[3] |
Waters ER, Vierling E. 2020. Plant small heat shock proteins – evolutionary and functional diversity. New Phytologist 227:24−37 doi: 10.1111/nph.16536 |
[4] |
Lee GJ, Vierling E. 2000. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiology 122:189−98 doi: 10.1104/pp.122.1.189 |
[5] |
Basha E, O'Neill H, Vierling E. 2012. Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions. Trends in Biochemical Sciences 37:106−17 doi: 10.1016/j.tibs.2011.11.005 |
[6] |
Huang S, Huang D, Fu L, Qin Y, Tang J, et al. 2023. Characterization of Arabidopsis thaliana Hsp20 gene family and its expression analysis under drought and salt stress. Life Science Research 27:162−69 |
[7] |
Sarkar NK, Kim YK, Grover A. 2009. Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 10:393 doi: 10.1186/1471-2164-10-393 |
[8] |
Lopes-Caitar VS, de Carvalho MCCG, Darben LM, Kuwahara MK, Nepomuceno AL, et al. 2013. Genome-wide analysis of the Hsp20 gene family in soybean: comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses. BMC Genomics 14:577 doi: 10.1186/1471-2164-14-577 |
[9] |
Muthusamy SK, Dalal M, Chinnusamy V, Bansal KC. 2017. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. Journal of Plant Physiology 211:100−13 doi: 10.1016/j.jplph.2017.01.004 |
[10] |
Ji X, Yu Y, Ni P, Zhang G, Guo D. 2019. Genome-wide identification of small heat-shock protein (HSP20) gene family in grape and expression profile during berry development. BMC Plant Biology 19:433 doi: 10.1186/s12870-019-2031-4 |
[11] |
Zhou Y, Chen H, Chu P, Li Y, Tan B, et al. 2012. NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis. Plant Cell Reports 31:379−89 doi: 10.1007/s00299-011-1173-0 |
[12] |
Ma W, Guan X, Li J, Pan R, Wang L, et al. 2019. Mitochondrial small heat shock protein mediates seed germination via thermal sensing. Proceedings of the National Academy of Sciences of the United States of America 116:4716−12 doi: 10.1073/pnas.1815790116 |
[13] |
Lopez-Matas MA, Nuñez P, Soto A, Allona I, Casado R, et al. 2004. Protein cryoprotective activity of a cytosolic small heat shock protein that accumulates constitutively in chestnut stems and is up-regulated by low and high temperatures. Plant Physiology 134:1708−17 doi: 10.1104/pp.103.035857 |
[14] |
Dai S, Yan H, Wang G. 2008. National flower peony archives. Henan: Henan University Press. pp 3−8. |
[15] |
Zhou S, Zou X, Zhou Z, Liu J, Xu C, et al. 2014. Multiple species of wild tree peonies gave rise to the 'king of flowers', Paeonia suffruticosa Andrews. Proceedings of the Royal Society B-Biological Sciences 281:20141687 doi: 10.1098/rspb.2014.1687 |
[16] |
Peng L, Li Y, Tan W, Wu S, Hao Q, et al. 2023. Combined genome-wide association studies and expression quantitative trait locus analysis uncovers a genetic regulatory network of floral organ number in a tree peony (Paeonia suffruticosa Andrews) breeding population. Horticulture Research 10:uhad110 doi: 10.1093/hr/uhad110 |
[17] |
Yuan J, Jiang S, Jian J, Liu M, Yue Z, et al. 2022. Genomic basis of the gigachromosomes and giga-genome of tree peony Paeonia ostii. Nature Communication 13:7328 doi: 10.1038/s41467-022-35063-1 |
[18] |
Dai L, Wu L, Dong Q, Yan G, Qu J, et al. 2018. Genome-wide association ananlysis of maize kernel length. Journal of Northwest A & F University (Natural Science Edition) 26:20−28 |
[19] |
Huang R, Wang JY, Yao MZ, Ma CL, Chen L. 2022. Quantitative trait loci mapping for free amino acid content using an albino population and SNP markers provides insight into the genetic improvement of tea plants. Horticulture Research 9:uhab029 doi: 10.1093/hr/uhab029 |
[20] |
Park JS, Kang MY, Shim EJ, Oh JH, Seo KI, et al. 2022. Genome-wide core sets of SNP markers and Fluidigm assays for rapid and effective genotypic identification of Korean cultivars of lettuce (Lactuca sativa L.). Horticulture Research 9:uhac119 doi: 10.1093/hr/uhac119 |
[21] |
Sumitomo K, Shirasawa K, Isobe S, Hirakawa H, Harata A, et al. 2022. A genome-wide association and fine-mapping study of white rust resistance in hexaploid chrysanthemum cultivars with a wild diploid reference genome. Horticulture Research 9:uhac170 doi: 10.1093/hr/uhac170 |
[22] |
Kumar S, Molloy C, Hunt M, Deng CH, Wiedow C, et al. 2022. GWAS provides new insights into the genetic mechanisms of phytochemicals production and red skin colour in apple. Horticulture Research 9:uhac218 doi: 10.1093/hr/uhac218 |
[23] |
Li Y, Guo L, Wang Z, Zhao D, Guo D, et al. 2023. Genome-wide association study of 23 flowering phenology traits and 4 floral agronomic traits in tree peony (Paeonia section Moutan DC.) reveals five genes known to regulate flowering time. Horticulture Research 10:uhac263 doi: 10.1093/hr/uhac263 |
[24] |
Xia Y, Li R, Ning Z, Bai G, Siddique KHM, et al. 2013. Single nucleotide polymorphisms in HSP17.8 and their association with agronomic traits in Barley. PLoS ONE 8:e56816 doi: 10.1371/journal.pone.0056816 |
[25] |
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009 |
[26] |
Voorrips RE. 2002. Mapchart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity 93:77−78 doi: 10.1093/jhered/93.1.77 |
[27] |
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44:W232−W235 doi: 10.1093/nar/gkw256 |
[28] |
Shu Q, Wang L, Wu J, Du H, Liu Z, et al. 2012. Analysis of the formation of flower shapes in wild species and cultivars of tree peony using the MADS-box subfamily gene. Gene 493:113−23 doi: 10.1016/j.gene.2011.11.008 |
[29] |
Tamura K, Stecher G, Paterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis software version 6.0. Molecular Biology and Evolution 30:2725−29 doi: 10.1093/molbev/mst197 |
[30] |
Barrett JC, Fry B, Maller J, Daly MJ. 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263−65 doi: 10.1093/bioinformatics/bth457 |
[31] |
Earl DA, VonHoldt BM. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4:359−61 doi: 10.1007/s12686-011-9548-7 |
[32] |
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, et al. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633−35 doi: 10.1093/bioinformatics/btm308 |
[33] |
He F, Zhang B. 2019. Identification and phylogenetic analysis of GbHsp20 gene family in Ginkgo biloba L. Molecular Plant Breeding 17:7368−76 doi: 10.13271/j.mpb.017.007368 |
[34] |
Siddique M, Gernhard S, von Koskull-Döring P, Vierling E, Scharf KD. 2008. The plant sHsp superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress and Chaperones 13:183−97 doi: 10.1007/s12192-008-0032-6 |
[35] |
Ouyang Y, Chen J, Xie W, Wang L, Zhang Q. 2009. Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice. Plant Molecular Biology 70:341−57 doi: 10.1007/s11103-009-9477-y |
[36] |
Guo M, Liu JH, Lu JP, Zhai YF, Wang H, et al. 2015. Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress. Frontiers in Plant Science 6:806 doi: 10.3389/fpls.2015.00806 |
[37] |
Yu J, Cheng Y, Feng K, Ruan M, Ye Q, et al. 2016. Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses. Frontiers in Plant Science 7:1215 doi: 10.3389/fpls.2016.01215 |
[38] |
Zhao P, Wang D, Wang R, Kong N, Zhang C, et al. 2018. Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress. BMC Genomics 19:61 doi: 10.1186/s12864-018-4443-1 |
[39] |
Yao F, Song C, Wang H, Song S, Jiao J, et al. 2020. Genome-wide characterization of the HSP20 gene family identifies potential members involved in temperature stress response in apple. Frontiers in Genetics 11:609184 doi: 10.3389/fgene.2020.609184 |
[40] |
Zhang K, Ma M, Wang P, Li Y, Jin Y, et al. 2022. Identification of HSP20 family genes in Citrus and their expression in pathogen infection responses Citrus Canker. Acta Horticulturae Sinica 49:1213−32 doi: 10.16420/j.issn.0513-353x.2021-0331 |
[41] |
Huai H, Dong L, Ning K, Hou C, Dai F, et al. 2022. Genome-wide identification of the Hsp20 gene family in Cannabis sativa and its expression profile. Acta Pharmaceutica Sinica 57:1203−15 doi: 10.16438/j.0513-4870.2021-1509 |
[42] |
Gallegos JE, Rose AB. 2019. An intron-derived motif strongly increases gene expression from transcribed sequences through a splicing independent mechanism in Arabidopsis thaliana. Scientific Reports 9:13777 doi: 10.1038/s41598-019-50389-5 |
[43] |
Li G, Zhao X, Zhou L, Zhou H. 2016. Cloning and expression analysis of small heat shock protein (FaHSP17.4) gene from strawberry fruit (Fragaria ananassa). Molecular Plant Breeding 14:328−36 doi: 10.13271/j.mpb.014.000328 |
[44] |
Waters ER. 2013. The evolution, function, structure, and expression of the plant sHSPs. Journal of Experimental Botany 64:391−403 doi: 10.1093/jxb/ers355 |
[45] |
Luo S. 2019. The cloning and identification of the hsp gene in a floral mutant Arabidopsis thaliana. Thesis. Hunan Agricultural University, Changsha City. |
[46] |
Yano K, Yamamoto E, Aya K, Takeuchi H, Lo PC, et al. 2016. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature Genetics 48:927−34 doi: 10.1038/ng.3596 |
[47] |
Yu J. 2018. Sequence polymorphisms analysis of inflorescence development-related genes TD1 and FEA2 and their associations with yield- related traits in mazie (Zea mays L.). Yangzhou University, Yangzhou. |
[48] |
Lin P, Yin H, Yan C, Yao X, Wang K. 2019. Association genetics identifies single nucleotide polymorphisms related to kernel oil content and quality in Camellia oleifera. Journal of Agricultural & Food Chemistry 67:2547−62 doi: 10.1021/acs.jafc.8b03399 |