Abdelfattah A, Tack AJM, Wasserman B, Liu J, Berg G, et al. 2022. Evidence for host–microbiome co-evolution in apple. New Phytologist 234:2088−100

doi: 10.1111/nph.17820

Abdullaeva Y, Ambika Manirajan B, Honermeier B, Schnell S, Cardinale M. 2021. Domestication affects the composition, diversity, and co-occurrence of the cereal seed microbiota. Journal of Advanced Research 31:75−86

doi: 10.1016/j.jare.2020.12.008

Ahemad M, Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science 26:1−20

doi: 10.1016/j.jksus.2013.05.001

Ahmad F, Ahmad I, Khan MS. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research 163:173−81

doi: 10.1016/j.micres.2006.04.001

Bargaz A, Elhaissoufi W, Khourchi S, Benmrid B, Borden KA, et al. 2021. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus. Microbiological Research 252:126842

doi: 10.1016/j.micres.2021.126842

Battisti M, Moretti B, Sacco D, Grignani C, Zavattaro L. 2022. Soil Olsen P response to different phosphorus fertilization strategies in long-term experiments in NW Italy. Soil Use and Management 38:549−563

doi: 10.1111/sum.12701

Berendsen RL, Pieterse CMJ, Bakker PAHM. 2012. The rhizosphere microbiome and plant health. Trends in Plant Science 17:478−86

doi: 10.1016/j.tplants.2012.04.001

Bi QF, Zheng BX, Lin XY, Li KJ, Liu XP, et al. 2018. The microbial cycling of phosphorus on long-term fertilized soil: Insights from phosphate oxygen isotope ratios. Chemical Geology 483:56−64

doi: 10.1016/j.chemgeo.2018.02.013

Billah M, Khan M, Bano A, Hassan TU, Munir A, et al. 2019. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal 36:904−16

doi: 10.1080/01490451.2019.1654043

Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, et al. 2015. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host & Microbe 17:392−403

doi: 10.1016/j.chom.2015.01.011

Bünemann EK, Oberson A, Liebisch F, Keller F, Annaheim KE, et al. 2012. Rapid microbial phosphorus immobilization dominates gross phosphorus fluxes in a grassland soil with low inorganic phosphorus availability. Soil Biology and Biochemistry 51:84−95

doi: 10.1016/j.soilbio.2012.04.012

Carrillo J, Ingwell LL, Li X, Kaplan I. 2019. Domesticated tomatoes are more vulnerable to negative plant–soil feedbacks than their wild relatives. Journal of Ecology 107:1753−66

doi: 10.1111/1365-2745.13157

Castagno LN, Sannazzaro AI, Gonzalez ME, Pieckenstain FL, Estrella MJ. 2021. Phosphobacteria as key actors to overcome phosphorus deficiency in plants. Annals of Applied Biology 178:256−67

doi: 10.1111/aab.12673

Castrillo G, Teixeira PJPL, Paredes SH, Law TF, de Lorenzo L, et al. 2017. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543:513−18

doi: 10.1038/nature21417

Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890

doi: 10.1093/bioinformatics/bty560

Clausing S, Polle A. 2020. Mycorrhizal phosphorus efficiencies and microbial competition drive root P uptake. Frontiers in Forests and Global Change 3:54

doi: 10.3389/ffgc.2020.00054

Demirer GS, Gibson DJ, Yue X, Pan K, Elishav E, et al. 2023. Phosphate deprivation-induced changes in tomato are mediated by an interaction between brassinosteroid signaling and zinc. New Phytologist 239:1368−83

doi: 10.1111/nph.19007

Dey G, Banerjee P, Sharma RK, Maity JP, Etesami H, et al. 2021. Management of Phosphorus in Salinity-Stressed Agriculture for Sustainable Crop Production by Salt-Tolerant Phosphate-Solubilizing Bacteria — A Review. Agronomy 11:1552

doi: 10.3390/agronomy11081552

Doebley JF, Gaut BS, Smith BD. 2006. The molecular genetics of crop domestication. Cell 127:1309−21

doi: 10.1016/j.cell.2006.12.006

Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10:996−98

doi: 10.1038/nmeth.2604

Finkel OM, Salas-González I, Castrillo G, Spaepen S, Law TF, et al. 2019. The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLoS Biology 17:e3000534

doi: 10.1371/journal.pbio.3000534

de la Fuente Cantó C, Simonin M, King E, Moulin L, Bennett MJ, et al. 2020. An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. The Plant Journal 103:951−64

doi: 10.1111/tpj.14781

Hassani MA, Durán P, Hacquard S. 2018. Microbial interactions within the plant holobiont. Microbiome 6:58

doi: 10.1186/s40168-018-0445-0

Hiruma K, Gerlach N, Sacristán S, Nakano RT, Hacquard S, et al. 2016. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165:464−74

doi: 10.1016/j.cell.2016.02.028

Isidra-Arellano MC, Delaux PM, Valdés-López O. 2021. The Phosphate Starvation Response System: Its Role in the Regulation of Plant–Microbe Interactions. Plant and Cell Physiology 62:392−400

doi: 10.1093/pcp/pcab016

Jia X, Wang L, Zeng H, Yi K. 2021. Insights of intracellular/intercellular phosphate transport and signaling in unicellular green algae and multicellular land plants. New Phytologist 232:1566−71

doi: 10.1111/nph.17716

Kalayu G. 2019. Phosphate Solubilizing Microorganisms: Promising Approach as Biofertilizers. International Journal of Agronomy 2019:e4917256

doi: 10.1155/2019/4917256

Lang M, Bei S, Li X, Kuyper TW, Zhang J. 2019. Rhizoplane Bacteria and Plant Species Co-determine Phosphorus-Mediated Microbial Legacy Effect. Frontiers in Microbiology 10:2856

doi: 10.3389/fmicb.2019.02856

Li H, He K, Zhang Z, Hu Y. 2023. Molecular mechanism of phosphorous signaling inducing anthocyanin accumulation in Arabidopsis. Plant Physiology and Biochemistry 196:121−29

doi: 10.1016/j.plaphy.2023.01.029

Liang JL, Liu J, Jia P, Yang TT, Zeng QL, et al. 2020. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. The ISME Journal 14:1600−13

doi: 10.1038/s41396-020-0632-4

Liu J, Abdelfattah A, Norelli J, Burchard E, Schena L, et al. 2018. Apple endophytic microbiota of different rootstock/scion combinations suggests a genotype-specific influence. Microbiome 6:18

doi: 10.1186/s40168-018-0403-x

Liu F, Hewezi T, Lebeis SL, Pantalone V, Grewal PS, et al. 2019. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiology 19:201

doi: 10.1186/s12866-019-1572-x

López-Arredondo D, Leyva-González M, González-Morales S, López-Bucio J, Herrera-Estrella L. 2014. Phosphate Nutrition: Improving Low-Phosphate Tolerance in Crops. Annual review of plant biology 65:95−123

doi: 10.1146/annurev-arplant-050213-035949

Lu JL, Jia P, Feng SW, Wang YT, Zheng J, et al. 2022. Remarkable effects of microbial factors on soil phosphorus bioavailability: A country-scale study. Global Change Biology 28:4459−71

doi: 10.1111/gcb.16213

Lu YT, Li MY, Cheng KY, Tan CM, Su LW, et al. 2014. Transgenic plants that express the phytoplasma effector SAP11 show altered phosphate starvation and defense responses. Plant Physiology 164:1456−69

doi: 10.1104/pp.113.229740

Magoč T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957−63

doi: 10.1093/bioinformatics/btr507

Martínez-Romero E, Aguirre-Noyola JL, Taco-Taype N, Martínez-Romero J, Zuñiga-Dávila D. 2020. Plant microbiota modified by plant domestication. Systematic and Applied Microbiology 43:126106

doi: 10.1016/j.syapm.2020.126106

Oberson A, Friesen DK, Rao IM, Bühler S, Frossard E. 2001. Phosphorus Transformations in an Oxisol under contrasting land-use systems: The role of the soil microbial biomass. Plant and Soil 237:197−210

doi: 10.1023/A:1013301716913

Olsen S r. , Sommers L e. 1983. Phosphorus. In: Methods of Soil Analysis. John Wiley & Sons, Ltd, 403–430.

Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, et al. 2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences of the United States of America 110:6548−53

doi: 10.1073/pnas.1302837110

Peralta IE, Spooner DM, Knapp S. 2008. Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Systematic Botany Monographs 84:1−186

Pérez-Jaramillo JE, de Hollander M, Ramírez CA, Mendes R, Raaijmakers JM, et al. 2019. Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome 7:114

doi: 10.1186/s40168-019-0727-1

Pérez-Jaramillo JE, Mendes R, Raaijmakers JM. 2016. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Molecular Biology 90:635−44

doi: 10.1007/s11103-015-0337-7

Raaijmakers JM, Kiers ET. 2022. Rewilding plant microbiomes. Science 378:599−600

doi: 10.1126/science.abn6350

Ren Y, Yu G, Shi C, Liu L, Guo Q, et al. 2022. Majorbio Cloud: A one-stop, comprehensive bioinformatic platform for multiomics analyses. iMeta 1:e12

doi: 10.1002/imt2.12

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, et al. 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75:7537−41

doi: 10.1128/AEM.01541-09

Seeling B, Zasoski RJ. 1993. Microbial effects in maintaining organic and inorganic solution phosphorus concentrations in a grassland topsoil. Plant and Soil 148:277−84

doi: 10.1007/BF00012865

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biology 12:R60

doi: 10.1186/gb-2011-12-6-r60

Shi J, Zhao B, Zheng S, Zhang X, Wang X, et al. 2021. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell 184:5527−5540.E18

doi: 10.1016/j.cell.2021.09.030

Smulders L, Benítez E, Moreno B, López-García Á, Pozo MJ, et al. 2021. Tomato Domestication Affects Potential Functional Molecular Pathways of Root-Associated Soil Bacteria. Plants 10:1942

doi: 10.3390/plants10091942

Stackebrandt E, Goebel BM. 1994. Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. International Journal of Systematic and Evolutionary Microbiology 44:846−49

doi: 10.1099/00207713-44-4-846

Sugito T, Yoshida K, Takebe M, Shinano T, Toyota K. 2010. Soil microbial biomass phosphorus as an indicator of phosphorus availability in a Gleyic Andosol. Soil Science & Plant Nutrition 56:390−98

doi: 10.1111/j.1747-0765.2010.00483.x

Suleman M, Yasmin S, Rasul M, Yahya M, Atta BM, et al. 2018. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat. PLoS ONE 13:e0204408

doi: 10.1371/journal.pone.0204408

Sun X, Song B, Xu R, Zhang M, Gao P, et al. 2021. Root-associated (rhizosphere and endosphere) microbiomes of the Miscanthus sinensis and their response to the heavy metal contamination. Journal of Environmental Sciences (China) 104:387−98

doi: 10.1016/j.jes.2020.12.019

Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. 2015. The importance of the microbiome of the plant holobiont. New Phytologist 206:1196−206

doi: 10.1111/nph.13312

Wang X, Gao L, Jiao C, Stravoravdis S, Hosmani PS, et al. 2020. Genome of Solanum pimpinellifolium provides insights into structural variants during tomato breeding. Nature Communications 11:5817

doi: 10.1038/s41467-020-19682-0

Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73:5261−67

doi: 10.1128/AEM.00062-07

Wang JL, Liu KL, Zhao XQ, Gao GF, Wu YH, et al. 2022. Microbial keystone taxa drive crop productivity through shifting aboveground-belowground mineral element flows. The Science of the Total Environment 811:152342

doi: 10.1016/j.scitotenv.2021.152342

Xu H, Zhang J, Guo X, Qu B, Liu Y, et al. 2021. Planting, Sample Collection and Library Preparation of 16S rRNA Gene Amplicon Sequencing for Rice Root Microbiomes. Microbiome Protocols eBook Bio-101:e2003697(in Chinese)

doi: 10.21769/BioProtoc.2003697

Xu L, Zhao H, Wan R, Liu Y, Xu Z, et al. 2019. Identification of vacuolar phosphate efflux transporters in land plants. Nature Plants 5:84−94

doi: 10.1038/s41477-018-0334-3

Zhang Y, Wang L, Guo Z, Xu L, Zhao H, et al. 2022. Revealing the underlying molecular basis of phosphorus recycling in the green manure crop Astragalus sinicus. Journal of Cleaner Production 341:130924

doi: 10.1016/j.jclepro.2022.130924

Zhou H, Ma A, Zhou X, Chen X, Zhang J, et al. 2022. Phosphorus Shapes Soil Microbial Community Composition and Network Properties During Grassland Expansion Into Shrubs in Tibetan Dry Valleys. Frontiers in Plant Science 13:848691

doi: 10.3389/fpls.2022.848691