[1]

Pichersky E, Noel JP, Dudareva N. 2006. Biosynthesis of plant volatiles: nature's diversity and ingenuity. Science 311:808−11

doi: 10.1126/science.1118510
[2]

Seymour GB, Turker G. 1993. Avocado. In Biochemistry of fruit ripening. eds. Seymour GB, Taylor JE, Tucker GA. Dordrecht: Springer. pp. 53−81. https://doi.org/10.1007/978-94-011-1584-1_2

[3]

Schwab W, Schreier P. 2002. Enzymic Formation of Flavor Volatiles from Lipids. In Lipid Biotechnology, eds. Kuo TS, Gardner H. 1st Edition. Boca Raton: CRC Press. pp. 328−58. https://doi.org/10.1201/9780203908198

[4]

Goepfert S, Poirier Y. 2007. β-oxidation in fatty acid degradation and beyond. Current Opinion in Plant Biology 10:245−51

doi: 10.1016/j.pbi.2007.04.007
[5]

Husain Q. 2010. Chemistry and biochemistry of some vegetable flavors. In Handbook of Fruit and Vegetable Flavors, ed. Hui YH. , Hoboken, New Jersey: John Wiley & Sons. pp. 573−625. https://doi.org/10.1002/9780470622834.ch32

[6]

Dudareva N, Negre F, Nagegowda DA, Orlova I. 2006. Plant Volatiles: Recent Advances and Future Perspectives. Critical Reviews in Plant Sciences 25:417−40

doi: 10.1080/07352680600899973
[7]

Matsui K. 2006. Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Current Opinion in Plant Biology 9:274−80

doi: 10.1016/j.pbi.2006.03.002
[8]

Fan W, Xu Y, Jiang W, Li J. 2010. Identification and quantification of impact aroma compounds in 4 nonfloral Vitis vinifera varieties grapes. Journal of Food Science 75:S81−S88

doi: 10.1111/j.1750-3841.2009.01436.x
[9]

Janzantti NS, Monteiro M. 2014. Changes in the aroma of organic passion fruit (Passiflora edulis Sims f. flavicarpa Deg.) during ripeness. LWT - Food Science and Technology 59:612−20

doi: 10.1016/j.lwt.2014.07.044
[10]

Nie CN, Gao Y, Du X, Bian JL, Li H, et al. 2020. Characterization of the effect of cis-3-hexen-1-ol on green tea aroma. Scientific Reports 10:15506

doi: 10.1038/s41598-020-72495-5
[11]

Yang W, Cadwallader KR, Liu Y, Huang M, Sun B. 2019. Characterization of typical potent odorants in raw and cooked Toona sinensis (A. Juss.) M. Roem. by instrumental-sensory analysis techniques. Food Chemistry 282:153−63

doi: 10.1016/j.foodchem.2018.12.112
[12]

McRae JF, Mainland JD, Jaeger SR, Adipietro KA, Matsunami H, et al. 2012. Genetic variation in the odorant receptor OR2J3 is associated with the ability to detect the "grassy" smelling odor, cis-3-hexen-1-ol. Chemical Senses 37:585−93

doi: 10.1093/chemse/bjs049
[13]

Feussner I, Wasternack C. 2002. The lipoxygenase pathway. Annual Review of Plant Biology 53:275−97

doi: 10.1146/annurev.arplant.53.100301.135248
[14]

Howe GA, Schilmiller AL. 2002. Oxylipin metabolism in response to stress. Current Opinion in Plant Biology 5:230−36

doi: 10.1016/s1369-5266(02)00250-9
[15]

Kuroda H, Oshima T, Kaneda H, Takashio M. 2005. Identification and functional analyses of two cDNAs that encode fatty acid 9-/13-hydroperoxide lyase (CYP74C) in rice. Bioscience, Biotechnology, and Biochemistry 69:1545−54

doi: 10.1271/bbb.69.1545
[16]

Noordermeer MA, Van Dijken AJ, Smeekens SC, Veldink GA, Vliegenthart JF. 2000. Characterization of three cloned and expressed 13-hydroperoxide lyase isoenzymes from alfalfa with unusual N-terminal sequences and different enzyme kinetics. European Journal of Biochemistry 267:2473−82

doi: 10.1046/j.1432-1327.2000.01283.x
[17]

Vancanneyt G, Sanz C, Farmaki T, Paneque M, Ortego F, et al. 2001. Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proceedings of the National Academy of Sciences of the United States of America 98:8139−44

doi: 10.1073/pnas.141079498
[18]

Croft K, Juttner F, Slusarenko AJ. 1993. Volatile Products of the Lipoxygenase Pathway Evolved from Phaseolus vulgaris (L.) Leaves Inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiology 101:13−24

doi: 10.1104/pp.101.1.13
[19]

Schwab W, Davidovich-Rikanati R, Lewinsohn E. 2008. Biosynthesis of plant-derived flavor compounds. The Plant Journal 54:712−32

doi: 10.1111/j.1365-313X.2008.03446.x
[20]

Akacha NB, Boubaker O, Gargouri M. 2005. Production of hexenol in a two-enzyme system: kinetic study and modelling. Biotechnology Letters 27:1875−78

doi: 10.1007/s10529-005-3896-x
[21]

Bartley IM, Stoker PG, Martin ADE, Hatfield SGS, Knee M. 1985. Synthesis of aroma compounds by apples supplied with alcohols and methyl esters of fatty acids. Journal of the Science of Food and Agriculture 36:567−74

doi: 10.1002/jsfa.2740360708
[22]

Boatright J, Negre F, Chen X, Kish CM, Wood B, et al. 2004. Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiology 135:1993−2011

doi: 10.1104/pp.104.045468
[23]

Rambla JL, Tikunov YM, Monforte AJ, Bovy AG, Granell A. 2014. The expanded tomato fruit volatile landscape. Journal of Experimental Botany 65:4613−23

doi: 10.1093/jxb/eru128
[24]

Tieman D, Taylor M, Schauer N, Fernie AR, Hanson AD, et al. 2006. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proceedings of the National Academy of Sciences of the United States of America 103:8287−92

doi: 10.1073/pnas.0602469103
[25]

Tieman DM, Loucas HM, Kim JY, Clark DG, Klee HJ. 2007. Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochemistry 68:2660−69

doi: 10.1016/j.phytochem.2007.06.005
[26]

Landaud S, Helinck S, Bonnarme P. 2008. Formation of volatile sulfur compounds and metabolism of methionine and other sulfur compounds in fermented food. Applied Microbiology and Biotechnology 77:1191−205

doi: 10.1007/s00253-007-1288-y
[27]

Cannon RJ, Ho CT. 2018. Volatile sulfur compounds in tropical fruits. Journal of Food and Drug Analysis 26:445−68

doi: 10.1016/j.jfda.2018.01.014
[28]

Lichtenthaler HK. 2000. Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochemical Society Transactions 28:785−89

doi: 10.1042/bst0280785
[29]

Miziorko HM. 2011. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Archives of Biochemistry and Biophysics 505:131−43

doi: 10.1016/j.abb.2010.09.028
[30]

Chen F, Tholl D, Bohlmann J, Pichersky E. 2011. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. The Plant Journal 66:212−29

doi: 10.1111/j.1365-313X.2011.04520.x
[31]

Schrader J, Bohlmann J. 2015. Biotechnology of Isoprenoids. Switzerland: Springer International Publishing. 475 pp. https://doi.org/10.1007/978-3-319-20107-8

[32]

Caputi L, Aprea E. 2011. Use of terpenoids as natural flavouring compounds in food industry. Recent Patents on Food, Nutrition & Agriculture 3:9−16

doi: 10.2174/2212798411103010009
[33]

Eddin LB, Jha NK, Meeran MFN, Kesari KK, Beiram R, Ojha S. 2021. Neuroprotective Potential of Limonene and Limonene Containing Natural Products. Molecules 26:4535

doi: 10.3390/molecules26154535
[34]

Russo EB. 2011. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. British Journal of Pharmacology 163:1344−64

doi: 10.1111/j.1476-5381.2011.01238.x
[35]

Nieuwenhuizen NJ, Green SA, Chen X, Bailleul EJD, Matich AJ, et al. 2013. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple. Plant Physiology 161:787−804

doi: 10.1104/pp.112.208249
[36]

Magnard JL, Roccia A, Caissard JC, Vergne P, Sun P, et al. 2015. Biosynthesis of monoterpene scent compounds in roses. Science 349:81−3

doi: 10.1126/science.aab0696
[37]

Mathieu S, Terrier N, Procureur J, Bigey F, Günata Z. 2005. A carotenoid cleavage dioxygenase from Vitis vinifera L. : functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. Journal of Experimental Botany 56:2721−31

doi: 10.1093/jxb/eri265
[38]

Liu L, Shao Z, Zhang M, Wang Q. 2015. Regulation of carotenoid metabolism in tomato. Molecular Plant 8:28−39

doi: 10.1016/j.molp.2014.11.006
[39]

Winterhalter P, Rouseff R. 2001. Carotenoid-derived aroma compounds: An introduction, In Carotenoid-Derived Aroma Compounds. ACS Symposium Series, eds. Winterhalter P, Rouseff RL. US: American Chemical Society. pp. 1−17. https://doi.org/10.1021/bk-2002-0802.ch001

[40]

Auldridge ME, McCarty DR, Klee HJ. 2006. Plant carotenoid cleavage oxygenases and their apocarotenoid products. Current Opinion in Plant Biology 9:315−21

doi: 10.1016/j.pbi.2006.03.005
[41]

Jing G, Li T, Qu H, Yun Z, Jia Y, et al. 2015. Carotenoids and volatile profiles of yellow- and red-fleshed papaya fruit in relation to the expression of carotenoid cleavage dioxygenase genes. Postharvest Biology and Technology 109:114−19

doi: 10.1016/j.postharvbio.2015.06.006
[42]

Wang D, Seymour GB. 2017. Tomato Flavor: Lost and Found? Molecular Plant 10:782−84

doi: 10.1016/j.molp.2017.04.010
[43]

Simkin AJ, Underwood BA, Auldridge M, Loucas HM, Shibuya K, et al. 2004. Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of β-ionone, a fragrance volatile of petunia flowers. Plant Physiology 136:3504−14

doi: 10.1104/pp.104.049718
[44]

Mar A, Pripdeevech P. 2016. Volatile components of crude extracts of Osmanthus fragrans flowers and their antibacterial and antifungal activities. Chemistry of Natural Compounds 52:1106−9

doi: 10.1007/s10600-016-1876-0
[45]

Aloum L, Alefishat E, Adem A, Petroianu G. 2020. Ionone Is More than a Violet's Fragrance: A Review. Molecules 25:5822

doi: 10.3390/molecules25245822
[46]

Vogel JT, Tan BC, McCarty DR, Klee HJ. 2008. The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. Journal of Biological Chemistry 283:11364−73

doi: 10.1074/jbc.M710106200
[47]

Giuliano G, Al-Babili S, von Lintig J. 2003. Carotenoid oxygenases: cleave it or leave it. Trends in Plant Science 8:145−49

doi: 10.1016/s1360-1385(03)00053-0
[48]

Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ. 2004. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseu doionone, and geranylacetone. The Plant Journal 40:882−92

doi: 10.1111/j.1365-313X.2004.02263.x
[49]

Verma DK, Srivastav PP. 2020. A paradigm of volatile aroma compounds in rice and their product with extraction and identification methods: A comprehensive review. Food Research International 130:108924

doi: 10.1016/j.foodres.2019.108924
[50]

Bao G, Ashraf U, Wang C, He L, Wei X, et al. 2018. Molecular basis for increased 2-acetyl-1-pyrroline contents under alternate wetting and drying (AWD) conditions in fragrant rice. Plant Physiology and Biochemistry 133:149−57

doi: 10.1016/j.plaphy.2018.10.032
[51]

Verma DK, Srivastav PP. 2018. Science and Technology of Aroma, Flavor, and Fragrance in Rice. 1st Edition. New York: Apple Academic Press. https://doi.org/10.1201/b22468-10

[52]

Zhang K, Gao L, Zhang C, Feng T, Zhuang H. 2022. Analysis of volatile flavor compounds of corn under different treatments by GC-MS and GC-IMS. Frontiers in Chemistry 10:725208

doi: 10.3389/fchem.2022.725208
[53]

Buttery JE, Chamberlain BR. 1994. Fresh vs frozen substrate for transketolase assay. Clinical Chemistry 40:1786−7

doi: 10.1093/clinchem/40.9.1786
[54]

Bradbury LMT, Fitzgerald TL, Henry RJ, Jin Q, Waters DLE. 2005. The gene for fragrance in rice. Biotechnology Journal 3:363−70

doi: 10.1111/j.1467-7652.2005.00131.x
[55]

Chen S, Yang Y, Shi W, Ji Q, He F, et al. 2008. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. The Plant Cell 20:1850−61

doi: 10.1105/tpc.108.058917
[56]

Yundaeng C, Somta P, Tangphatsornruang S, Chankaew S, Srinives P. 2015. A single base substitution in BADH/AMADH is responsible for fragrance in cucumber (Cucumis sativus L.), and development of SNAP markers for the fragrance. Theoretical and Applied Genetics 128:1881−92

doi: 10.1007/s00122-015-2554-5
[57]

Juwattanasomran R, Somta P, Kaga A, Chankaew S, Shimizu T, et al. 2012. Identification of a new fragrance allele in soybean and development of its functional marker. Molecular Breeding 29:13−21

doi: 10.1007/s11032-010-9523-0
[58]

Juwattanasomran R, Somta P, Chankaew S, Shimizu T, Wongpornchai S, et al. 2011. A SNP in GmBADH2 gene associates with fragrance in vegetable soybean variety "Kaori" and SNAP marker development for the fragrance. Theoretical and Applied Genetics 122:533−41

doi: 10.1007/s00122-010-1467-6
[59]

Attar U, Hinge V, Zanan R, Adhav R, Nadaf A. 2017. Identification of aroma volatiles and understanding 2-acetyl-1-pyrroline biosynthetic mechanism in aromatic mung bean (Vigna radiata (L.) Wilczek). Physiology and Molecular Biology of Plants 23:443−51

doi: 10.1007/s12298-017-0414-2
[60]

Omer N, Choo YM, Ahmad N, Mohd Yusof NS. 2021. Ultrasound-assisted encapsulation of Pandan (Pandanus amaryllifolius) extract. Ultrasonics Sonochemistry 79:105793

doi: 10.1016/j.ultsonch.2021.105793
[61]

Yundaeng C, Somta P, Tangphatsornruang S, Wongpornchai S, Srinives P. 2013. Gene discovery and functional marker development for fragrance in sorghum (Sorghum bicolor (L.) Moench). Theoretical and Applied Genetics 126:2897−906

doi: 10.1007/s00122-013-2180-z
[62]

Zhang Y, He Q, Zhang S, Man X, Sui Y, et al. 2023. De novo creation of popcorn-like fragrant foxtail millet. Journal of Integrative Plant Biology 65:2412−15

doi: 10.1111/jipb.13556
[63]

Zhang D, Tang S, Xie P, Yang D, Wu Y, et al. 2022. Creation of fragrant sorghum by CRISPR/Cas9. Journal of Integrative Plant Biology 64:961−64

doi: 10.1111/jipb.13232
[64]

Reis D, Jones T. 2017. Aromatherapy: Using essential oils as a supportive therapy. Clinical Journal of Oncology Nursing 21:16−19

doi: 10.1188/17.Cjon.16-19
[65]

Takabayashi J, Dicke M. 1996. Plant—carnivore mutualism through herbivore-induced carnivore attractants. Trends in Plant Science 1:109−13

doi: 10.1016/S1360-1385(96)90004-7
[66]

Kessler A, Baldwin IT. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141−44

doi: 10.1126/science.291.5511.2141
[67]

Seydpour F, Sayyari M. 2016. Chilling Injury in Cucumber Seedlings Amelioration by Methyl Salicylate. International Journal of Vegetable Science 22:432−41

doi: 10.1080/19315260.2015.1067938
[68]

Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113−6

doi: 10.1126/science.1147113
[69]

van den Boom CEM, van Beek TA, Posthumus MA, de Groot A, Dicke M. 2004. Qualitative and quantitative variation among volatile profiles induced by Tetranychus urticae feeding on plants from various families. Journal of Chemical Ecology 30:69−89

doi: 10.1023/b:joec.0000013183.72915.99
[70]

Zhu J, Park KC. 2005. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. Journal of Chemical Ecology 31:1733−46

doi: 10.1007/s10886-005-5923-8
[71]

Dolbeer RA, Woronecki PP, Bruggers RL. 1986. Reflecting tapes repel blackbirds from millet, sunflowers, and sweet corn. Wildlife Society Bulletin 14:418−25

[72]

Xie P, Shi J, Tang S, Chen C, Khan A, et al. 2019. Control of bird feeding behavior by Tannin1 through modulating the biosynthesis of polyphenols and fatty acid-derived volatiles in sorghum. Molecular Plant 12:1315−24

doi: 10.1016/j.molp.2019.08.004
[73]

Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, et al. 2007. Importance of pollinators in changing landscapes for world crops. Proceedings Biological Sciences 274:303−13

doi: 10.1098/rspb.2006.3721
[74]

Ollerton J, Winfree R, Tarrant S. 2011. How many flowering plants are pollinated by animals? Oikos 120:321−26

doi: 10.1111/j.1600-0706.2010.18644.x
[75]

Lahondère C, Vinauger C, Okubo RP, Wolff GH, Chan JK, et al. 2020. The olfactory basis of orchid pollination by mosquitoes. Proceedings of the National Academy of Sciences of the United States of America 117:708−16

doi: 10.1073/pnas.1910589117
[76]

Wang R, Yang Y, Jing Y, Segar ST, Zhang Y, et al. 2021. Molecular mechanisms of mutualistic and antagonistic interactions in a plant-pollinator association. Nature Ecology & Evolution 5:974−86

doi: 10.1038/s41559-021-01469-1
[77]

Dobson HEM, Danielson EM, Wesep IDV. 1999. Pollen odor chemicals as modulators of bumble bee foraging on Rosa rugosa Thunb. (Rosaceae). Plant Species Biology 14:153−66

doi: 10.1046/j.1442-1984.1999.00020.x
[78]

Strickler K. 1999. Impact of flower standing crop and pollinator movement on alfalfa seed yield. Environmental Entomology 28:1067−76

doi: 10.1093/ee/28.6.1067
[79]

Thomson JD. 2010. Flowering phenology, fruiting success and progressive deterioration of pollination in an early-flowering geophyte. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 365:3187−99

doi: 10.1098/rstb.2010.0115
[80]

Davidovich-Rikanati R, Sitrit Y, Tadmor Y, Iijima Y, Bilenko N, et al. 2007. Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway. Nature Biotechnology 25:899−901

doi: 10.1038/nbt1312
[81]

Cheng GT, Li YS, Qi SM, Wang J, Zhao P, et al. 2021. SlCCD1A Enhances the Aroma Quality of Tomato Fruits by Promoting the Synthesis of Carotenoid-Derived Volatiles. Foods 10:2678

doi: 10.3390/foods10112678
[82]

Tang Y, Abdelrahman M, Li J, Wang F, Ji Z, et al. 2021. CRISPR/Cas9 induces exon skipping that facilitates development of fragrant rice. Plant Biotechnology Journal 19:642−44

doi: 10.1111/pbi.13514
[83]

Wang Y, Liu X, Zheng X, Wang W, Yin X, et al. 2021. Creation of aromatic maize by CRISPR/Cas. Journal of Integrative Plant Biology 63:1664−70

doi: 10.1111/jipb.13105
[84]

Stuttmann J, Barthel K, Martin P, Ordon J, Erickson JL, et al. 2021. Highly efficient multiplex editing: one-shot generation of 8× Nicotiana benthamiana and 12× Arabidopsis mutants. The Plant Journal 106:8−22

doi: 10.1111/tpj.15197
[85]

Pan C, Wu X, Markel K, Malzahn AA, Kundagrami N, et al. 2021. CRISPR-Act3.0 for highly efficient multiplexed gene activation in plants. Nature Plants 7:942−53

doi: 10.1038/s41477-021-00953-7
[86]

Pan C, Li G, Malzahn AA, Cheng Y, Leyson B, et al. 2022. Boosting plant genome editing with a versatile CRISPR-Combo system. Nature Plants 8:513−25

doi: 10.1038/s41477-022-01151-9
[87]

Guo Y, Guo Z, Zhong J, Liang Y, Feng Y, et al. 2023. Positive regulatory role of R2R3 MYBs in terpene biosynthesis in Lilium 'Siberia'. Horticultural Plant Journal 9:1024−38

doi: 10.1016/j.hpj.2023.05.004
[88]

Chen Y, Wu X, Wang X, Li Q, Yin H, et al. 2024. bZIP transcription factor PubZIP914 enhances production of fatty acid-derived volatiles in pear. Plant Science 338:111905

doi: 10.1016/j.plantsci.2023.111905
[89]

Shen SL, Yin XR, Zhang B, Xie XL, Jiang Q, et al. 2016. CitAP2.10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in 'Newhall' orange. Journal of Experimental Botany 67:4105−15

doi: 10.1093/jxb/erw189
[90]

Chuang YC, Hung YC, Tsai WC, Chen WH, Chen HH. 2018. PbbHLH4 regulates floral monoterpene biosynthesis in Phalaenopsis orchids. Journal of Experimental Botany 69:4363−77

doi: 10.1093/jxb/ery246
[91]

Wang X, Zhang C, Miao Y, Deng L, Zhang B, et al. 2022. Interaction between PpERF5 and PpERF7 enhances peach fruit aroma by upregulating PpLOX4 expression. Plant Physiology and Biochemistry 185:378−89

doi: 10.1016/j.plaphy.2022.06.024
[92]

Liu F, Xiao Z, Yang L, Chen Q, Shao L, et al. 2017. PhERF6, interacting with EOBI, negatively regulates fragrance biosynthesis in petunia flowers. The New Phytologist 215:1490−502

doi: 10.1111/nph.14675
[93]

Zhang Y, Yin X, Xiao Y, Zhang Z, Li S, et al. 2018. An ETHYLENE RESPONSE FACTOR-MYB transcription complex regulates furaneol biosynthesis by activating QUINONE OXIDOREDUCTASE Expression in strawberry. Plant Physiol 178:189−201

doi: 10.1104/pp.18.00598
[94]

Conart C, Saclier N, Foucher F, Goubert C, Rius-Bony A, et al. 2022. Duplication and Specialization of NUDX1 in Rosaceae Led to Geraniol Production in Rose Petals. Molecular Biology and Evolution 39:msac002

doi: 10.1093/molbev/msac002
[95]

Mathieu S, Cin VD, Fei Z, Li H, Bliss P, et al. 2009. Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition. Journal of Experimental Botany 60:325−37

doi: 10.1093/jxb/ern294
[96]

Tieman D, Zhu G, Resende MFR Jr, Lin T, Nguyen C, et al. 2017. A chemical genetic roadmap to improved tomato flavor. Science 355:391−94

doi: 10.1126/science.aal1556
[97]

Gao L, Gonda I, Sun H, Ma Q, Bao K, et al. 2019. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature Genetics 51:1044−51

doi: 10.1038/s41588-019-0410-2
[98]

Shen J, Tieman D, Jones JB, Taylor MG, Schmelz E, et al. 2014. A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. Journal of Experimental Botany 65:419−28

doi: 10.1093/jxb/ert382
[99]

Waltz E. 2022. GABA-enriched tomato is first CRISPR-edited food to enter market. Nature Biotechnology 40:9−11

doi: 10.1038/d41587-021-00026-2
[100]

Chemler JA, Koffas MA. 2008. Metabolic engineering for plant natural product biosynthesis in microbes. Current Opinion in Biotechnology 19:597−605

doi: 10.1016/j.copbio.2008.10.011
[101]

Yang D, Park SY, Park YS, Eun H, Lee SY. 2020. Metabolic Engineering of Escherichia coli for Natural Product Biosynthesis. Trends in Biotechnology 38:745−65

doi: 10.1016/j.tibtech.2019.11.007
[102]

Gallage NJ, Møller BL. 2015. Vanillin–bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Molecular Plant 8:40−57

doi: 10.1016/j.molp.2014.11.008
[103]

Hansen EH, Møller BL, Kock GR, Bünner CM, Kristensen C, et al. 2009. De Novo Biosynthesis of Vanillin in Fission Yeast (Schizosaccharomyces pombe ) and Baker's Yeast (Saccharomyces cerevisiae). Applied and Environmental Microbiology 75:2765−74

doi: 10.1128/aem.02681-08
[104]

Lee D, Lloyd NDR, Pretorius IS, Borneman AR. 2016. Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion. Microbial Cell Factories 15:49

doi: 10.1186/s12934-016-0446-2
[105]

Li R, Wang K, Wang D, Xu L, Shi Y, et al. 2021. Production of plant volatile terpenoids (rose oil) by yeast cell factories. Green Chemistry 23:5088−96

doi: 10.1039/d1gc00917f
[106]

Machas MS, McKenna R, Nielsen DR. 2017. Expanding Upon Styrene Biosynthesis to Engineer a Novel Route to 2-Phenylethanol. Biotechnology Journal 12:1700310

doi: 10.1002/biot.201700310
[107]

Kim TY, Lee SW, Oh MK. 2014. Biosynthesis of 2-phenylethanol from glucose with genetically engineered Kluyveromyces marxianus. Enzyme and Microbial Technology 61−62:44−47

doi: 10.1016/j.enzmictec.2014.04.011
[108]

Wriessnegger T, Augustin P, Engleder M, Leitner E, Müller M, et al. 2014. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metabolic Engineering 24:18−29

doi: 10.1016/j.ymben.2014.04.001
[109]

Bang HB, Lee YH, Kim SC, Sung CK, Jeong KJ. 2016. Metabolic engineering of Escherichia coli for the production of cinnamaldehyde. Microbial Cell Factories 15:16

doi: 10.1186/s12934-016-0415-9