[1]

Lobell DB, Schlenker W, Costa-Roberts J. 2011. Climate trends and global crop production since 1980. Science 333:616−20

doi: 10.1126/science.1204531
[2]

Munns R. 2002. Comparative physiology of salt and water stress. Plant, Cell & Environment 25:239−50

doi: 10.1046/j.0016-8025.2001.00808.x
[3]

Liu W, Tai H, Li S, Gao W, Zhao M, et al. 2014. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytologist 201:1192−204

doi: 10.1111/nph.12607
[4]

Chen L, Song Y, Li S, Zhang L, Zou C, et al. 2012. The role of WRKY transcription factors in plant abiotic stresses. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819:120−28

doi: 10.1016/j.bbagrm.2011.09.002
[5]

Zheng X, Chen B, Lu G, Han B. 2009. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochemical and Biophysical Research Communications 379:985−89

doi: 10.1016/j.bbrc.2008.12.163
[6]

Du H, Zhang L, Liu L, Tang X, Yang W, et al. 2009. Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry (Moscow) 74:1−11

doi: 10.1134/S0006297909010015
[7]

Du H, Yang S, Liang Z, Feng B, Liu L, et al. 2012. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biology 12:106

doi: 10.1186/1471-2229-12-1
[8]

Yang X, Guo T, Li J, Chen Z, Guo B, et al. 2021. Genome-wide analysis of the MYB-related transcription factor family and associated responses to abiotic stressors in Populus. International Journal of Biological Macromolecules 191:359−76

doi: 10.1016/j.ijbiomac.2021.09.042
[9]

Sun X, Matus JT, Wong DCJ, Wang Z, Chai F, et al. 2018. The GARP/MYB-related grape transcription factor AQUILO improves cold tolerance and promotes the accumulation of raffinose family oligosaccharides. Journal of Experimental Botany 69:1749−64

doi: 10.1093/jxb/ery020
[10]

Liu J, Osbourn A, Ma P. 2015. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Molecular Plant 8:689−708

doi: 10.1016/j.molp.2015.03.012
[11]

Ambawat S, Sharma P, Yadav NR, Yadav RC. 2013. MYB transcription factor genes as regulators for plant responses: an overview. Physiology and Molecular Biology of Plants 19:307−21

doi: 10.1007/s12298-013-0179-1
[12]

Seo PJ, Park CM. 2009. Auxin homeostasis during lateral root development under drought condition. Plant Signaling & Behavior 4:1002−04

doi: 10.4161/psb.4.10.9716
[13]

Feng G, Burleigh JG, Braun EL, Mei W, Barbazuk WB. 2017. Evolution of the 3R-MYB gene family in plants. Genome Biology and Evolution 9:1013−29

doi: 10.1093/gbe/evx056
[14]

Dai X, Xu Y, Ma Q, Xu W, Wang T, et al. 2007. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiology 143:1739−51

doi: 10.1104/pp.106.094532
[15]

Roy S. 2016. Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signaling & Behavior 11:e1117723

doi: 10.1080/15592324.2015.1117723
[16]

Zhao K, Fan G, Yao W, Cheng Z, Zhou B, et al. 2024. PagMYB73 enhances salt stress tolerance by regulating reactive oxygen species scavenging and osmotic maintenance in poplar. Industrial Crops and Products 208:117893

doi: 10.1016/j.indcrop.2023.117893
[17]

Yang Y, Zhang L, Chen P, Liang T, Li X, et al. 2020. UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development. The EMBO Journal 39:e101928

doi: 10.15252/embj.2019101928
[18]

Wang S, Fan Y, Du S, Zhao K, Liu Q, et al. 2022. PtaERF194 inhibits plant growth and enhances drought tolerance in poplar. Tree Physiology 42:1678−92

doi: 10.1093/treephys/tpac026
[19]

Zhao K, Zhang D, Lv K, Zhang X, Cheng Z, et al. 2019. Functional characterization of poplar WRKY75 in salt and osmotic tolerance. Plant Science 289:110259

doi: 10.1016/j.plantsci.2019.110259
[20]

Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, et al. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596−604

doi: 10.1126/science.112869
[21]

Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, et al. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research 40:D1178−D1186

doi: 10.1093/nar/gkr944
[22]

He F, Wang H, Li H, Su Y, Li S, et al. 2018. PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus. Plant Biotechnology Journal 16:1514−28

doi: 10.1111/pbi.12893
[23]

Wang S, Huang J, Wang X, Fan Y, Liu Q, et al. 2021. PagERF16 of Populus promotes lateral root proliferation and sensitizes to salt stress. Frontiers in Plant Science 12:669143

doi: 10.3389/fpls.2021.669143
[24]

Sparkes IA, Runions J, Kearns A, Hawes C. 2006. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols 1:2019−25

doi: 10.1038/nprot.2006.286
[25]

Man J, Shi Y, Yu Z, Zhang Y. 2016. Root growth, soil water variation, and grain yield response of winter wheat to supplemental irrigation. Plant Production Science 19:193−205

doi: 10.1080/1343943X.2015.1128097
[26]

Liu B, Li H, Zhu B, Koide RT, Eissenstat DM, et al. 2015. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytologist 208:125−36

doi: 10.1111/nph.13434
[27]

Liu B, Li L, Rengel Z, Tian J, Li H, et al. 2019. Roots and arbuscular mycorrhizal fungi are independent in nutrient foraging across subtropical tree species. Plant and Soil 442:97−112

doi: 10.1007/s11104-019-04161-3
[28]

Wang N, Liu W, Yu L, Guo Z, Chen Z, et al. 2020. HEAT SHOCK FACTOR A8a modulates flavonoid synthesis and drought tolerance. Plant Physiology 184:1273−90

doi: 10.1104/pp.20.01106
[29]

Jayakody H, Liu S, Whitty M, Petrie P, et al. 2017. Microscope image based fully automated stomata detection and pore measurement method for grapevines. Plant Methods 13:94

doi: 10.1186/s13007-017-0244-9
[30]

Xu M, Xie W, Huang M. 2015. Two WUSCHEL-related HOMEOBOX genes, PeWOX11a and PeWOX11b, are involved in adventitious root formation of poplar. Physiologia Plantarum 155:446−56

doi: 10.1111/ppl.12349
[31]

Liu R, Wen S, Sun T, Wang R, Zuo W, et al. 2022. PagWOX11/12a positively regulates the PagSAUR36 gene that enhances adventitious root development in poplar. Journal of Experimental Botany 73:7298−311

doi: 10.1093/jxb/erac345
[32]

Li J, Zhang J, Jia H, Liu B, Sun P, et al. 2018. The WUSCHEL-related homeobox 5a (PtoWOX5a) is involved in adventitious root development in poplar. Tree Physiology 38:139−53

doi: 10.1093/treephys/tpx118
[33]

Rigal A, Yordanov YS, Perrone I, Karlberg A, Tisserant E, et al. 2012. The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar. Plant Physiology 160:1996−2006

doi: 10.1104/pp.112.204453
[34]

Li Y, Xue J, Wang F, Huang X, Gong B, et al. 2022. Plasma membrane-nucleo-cytoplasmic coordination of a receptor-like cytoplasmic kinase promotes EDS1-dependent plant immunity. Nature Plants 8:802−16

doi: 10.1038/s41477-022-01195-x
[35]

Rahnama A, James RA, Poustini K, Munns R. 2010. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology 37:255−63

doi: 10.1071/FP09148
[36]

Wang X, Niu Y, Zheng Y. 2021. Multiple functions of MYB transcription factors in abiotic stress responses. International Journal of Molecular Sciences 22:6125

doi: 10.3390/ijms22116125
[37]

Cui MH, Yoo KS, Hyoung S, Nguyen HTK, Kim YY, et al. 2013. An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance. FEBS Letters 587:1773−78

doi: 10.1016/j.febslet.2013.04.028
[38]

Wu J, Jiang Y, Liang Y, Chen L, Chen W, et al. 2019. Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants. Plant Physiology and Biochemistry 137:179−88

doi: 10.1016/j.plaphy.2019.02.010
[39]

Li X, Guo C, Ahmad S, Wang Q, Yu J, et al. 2019. Systematic analysis of MYB family genes in potato and their multiple roles in development and stress responses. Biomolecules 9:317

doi: 10.3390/biom9080317
[40]

Kamiya T, Borghi M, Wang P, Danku JMC, Kalmbach L, et al. 2015. The MYB36 transcription factor orchestrates Casparian strip formation. Proceedings of the National Academy of Sciences of the United States of America 112:10533−38

doi: 10.1073/pnas.1507691112
[41]

Liberman LM, Sparks EE, Moreno-Risueno MA, Petricka JJ, Benfey PN, et al. 2015. MYB36 regulates the transition from proliferation to differentiation in the Arabidopsis root. Proceedings of the National Academy of Sciences of the United States of America 112:12099−104

doi: 10.1073/pnas.1515576112
[42]

Fernández-Marcos M, Desvoyes B, Manzano C, Liberman LM, Benfey PN, et al. 2017. Control of Arabidopsis lateral root primordium boundaries by MYB36. New Phytologist 213:105−12

doi: 10.1111/nph.14304
[43]

Shin R, Burch AY, Huppert KA, Tiwari SB, Murphy AS, et al. 2007. The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. The Plant Cell 19:2440−53

doi: 10.1105/tpc.107.050963
[44]

Gaspar T, Kevers C, Penel C, Greppin H, Reid DM, et al. 1996. Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cellular & Developmental Biology-Plant 32:272−89

doi: 10.1007/BF02822700
[45]

Zhu N, Cheng S, Liu X, Du H, Dai M, et al. 2015. The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Science 236:146−56

doi: 10.1016/j.plantsci.2015.03.023
[46]

Lawson T, Blatt MR. 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology 164:1556−70

doi: 10.1104/pp.114.237107
[47]

McAinsh MR, Webb AAR, Taylor JE, Hetherington AM. 1995. Stimulus-induced oscillations in guard cell cytosolic free calcium. The Plant Cell 7:1207−19

doi: 10.2307/3870096
[48]

Orsini F, Alnayef M, Bona S, Maggio A, Gianquinto G. 2012. Low stomatal density and reduced transpiration facilitate strawberry adaptation to salinity. Environmental and Experimental Botany 81:1−10

doi: 10.1016/j.envexpbot.2012.02.005
[49]

Jiao Z, Han S, Li Z, Huang M, Niu M, et al. 2022. PdEPFL6 reduces stomatal density to improve drought tolerance in poplar. Industrial Crops and Products 182:114873

doi: 10.1016/j.indcrop.2022.114873
[50]

Xie C, Zhang R, Qu Y, Miao Z, Zhang Y, et al. 2012. Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density. New Phytologist 195:124−35

doi: 10.1111/j.1469-8137.2012.04136.x
[51]

Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909−30

doi: 10.1016/j.plaphy.2010.08.016
[52]

García-Caparrós P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, et al. 2021. Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. The Botanical Review 87:421−66

doi: 10.1007/s12229-020-09231-1
[53]

Kim SY, Lim JH, Park MR, Kim YJ, Park TI, et al. 2005. Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. Korean Society for Biochemistry and Molecular Biology 38:218−24

doi: 10.5483/bmbrep.2005.38.2.218
[54]

Cheng Z, Zhang X, Zhao K, Yao W, Li R, et al. 2019. Over-expression of ERF38 gene enhances salt and osmotic tolerance in transgenic poplar. Frontiers in Plant Science 10:1375

doi: 10.3389/fpls.2019.01375
[55]

Singh M, Kumar J, Singh S, Singh VP, Prasad SM, et al. 2015. Adaptation strategies of plants against heavy metal toxicity: a short review. Biochemistry & Pharmacology 4:1000161

[56]

Sergio L, De Paola A, Cantore V, Cascarano NA, Bianco VV, et al. 2012. Effect of salt stress on growth parameters, enzymatic antioxidant system, and lipid peroxidation in wild chicory (Cichorium intybus L.). Acta Physiologiae Plantarum 34:2349−58

doi: 10.1007/s11738-012-1038-3
[57]

Han D, Du M, Zhou Z, Wang S, Li T, et al. 2020. Overexpression of a Malus baccata NAC transcription factor gene MbNAC25 increases cold and salinity tolerance in Arabidopsis. International Journal of Molecular Sciences 21:1198

doi: 10.3390/ijms21041198
[58]

Huang X, Chen M, Yang L, Li Y, Wu J, et al. 2015. Effects of exogenous abscisic acid on cell membrane and endogenous hormone contents in leaves of sugarcane seedlings under cold stress. Sugar Tech 17:59−64

doi: 10.1007/s12355-014-0343-0
[59]

Zhang X, Cheng Z, Yao W, Gao Y, Fan G, et al. 2022. Overexpression of PagERF072 from poplar improves salt tolerance. International Journal of Molecular Sciences 23:10707

doi: 10.3390/ijms231810707
[60]

Xiong H, Li J, Liu P, Duan J, Zhao Y, et al. 2014. Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE 9:e92913

doi: 10.1371/journal.pone.0092913