[1]

Good SP, Noone D, Bowen G. 2015. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349:175−77

doi: 10.1126/science.aaa59
[2]

Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, et al. 2019. Tomato fruit development and metabolism. Frontiers in Plant Science 10:1554

doi: 10.3389/fpls.2019.01554
[3]

Zhu Y, Zhu G, Xu R, Jiao Z, Yang J, et al. 2023. A natural promoter variation of SlBBX31 confers enhanced cold tolerance during tomato domestication. Plant Biotechnology Journal 21:1033−43

doi: 10.1111/pbi.14016
[4]

Waadt R, Seller CA, Hsu PK, Takahashi Y, Munemasa S, et al. 2022. Plant hormone regulation of abiotic stress responses. Nature Reviews Molecular Cell Biology 23:680−94

doi: 10.1038/s41580-022-00479-6
[5]

Ku Y, Sintaha M, Cheung M, Lam H. 2018. Plant hormone signaling crosstalks between biotic and abiotic stress responses. International Journal of Molecular Sciences 19:3206

doi: 10.3390/ijms19103206
[6]

Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, et al. 2020. Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences 63:635−74

doi: 10.1007/s11427-020-1683-x
[7]

Yuan F, Yang H, Xue Y, Kong D, Ye R, et al. 2014. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367−71

doi: 10.1038/nature13593
[8]

Zhu J. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24

doi: 10.1016/j.cell.2016.08.029
[9]

Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R. 2003. The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734−37

doi: 10.1038/nature02027
[10]

Tyerman SD. 2002. Nonselective cation channels. Multiple functions and commonalities. Plant Physiology 128:327−28

doi: 10.1104/pp.900021
[11]

Kruse E, Uehlein N, Kaldenhoff R. 2006. The aquaporins. Genome Biology 7:206

doi: 10.1186/gb-2006-7-2-206
[12]

Shivaraj SM, Sharma Y, Chaudhary J, Rajora N, Sharma S, et al. 2021. Dynamic role of aquaporin transport system under drought stress in plants. Environmental and Experimental Botany 184:104367

doi: 10.1016/j.envexpbot.2020.104367
[13]

Li R, Wang J, Li S, Zhang L, Qi C, et al. 2016. Plasma membrane intrinsic proteins SlPIP2;1, SlPIP2;7 and SlPIP2;5 conferring enhanced drought stress tolerance in tomato. Scientific Reports 6:31814

doi: 10.1038/srep31814
[14]

Chong L, Hsu CC, Zhu Y. 2022. Advances in mass spectrometry-based phosphoproteomics for elucidating abscisic acid signaling and plant responses to abiotic stress. Journal of Experimental Botany 73:6547−57

doi: 10.1093/jxb/erac324
[15]

Zhu JK. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53:247−73

doi: 10.1146/annurev.arplant.53.091401.143329
[16]

Zhang J, Jia W, Yang J, Ismail AM. 2006. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research 97:111−19

doi: 10.1016/j.fcr.2005.08.018
[17]

Ali A, Pardo JM, Yun DJ. 2020. Desensitization of ABA-signaling: the swing from activation to degradation. Frontiers in Plant Science 11:379

doi: 10.3389/fpls.2020.00379
[18]

Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, et al. 2018. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 556:235−38

doi: 10.1038/s41586-018-0009-2
[19]

Chen X, Ding Y, Yang Y, Song C, Wang B, et al. 2021. Protein kinases in plant responses to drought, salt, and cold stress. Journal of Integrative Plant Biology 63:53−78

doi: 10.1111/jipb.13061
[20]

Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, et al. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064−68

doi: 10.1126/science.1172408
[21]

Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, et al. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068−71

doi: 10.1126/science.1173041
[22]

Liu S, Lv Z, Liu Y, Li L, Zhang L. 2018. Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana. Genetics and Molecular Biology 41:624−37

doi: 10.1590/1678-4685-gmb-2017-0229
[23]

Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, et al. 2006. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proceedings of the National Academy of Sciences of the United States of America 103:18822−27

doi: 10.1073/pnas.0605639103
[24]

Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, et al. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, Transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications 290:998−1009

doi: 10.1006/bbrc.2001.6299
[25]

Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, et al. 2006. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell 18:1292−309

doi: 10.1105/tpc.105.035881
[26]

Lee SJ, Kang JY, Park HJ, Kim MD, Bae MS, et al. 2010. DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiology 153:716−27

doi: 10.1104/pp.110.154617
[27]

Kim JS, Mizoi J, Yoshida T, Fujita Y, Nakajima J, et al. 2011. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant and Cell Physiology 52:2136−46

doi: 10.1093/pcp/pcr143
[28]

Fujii H, Zhu JK. 2009. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences of the United States of America 106:8380−85

doi: 10.1073/pnas.0903144106
[29]

Zhu Y, Huang P, Guo P, Chong L, Yu G, et al. 2020. CDK8 is associated with RAP2.6 and SnRK2.6 and positively modulates abscisic acid signaling and drought response in Arabidopsis. New Phytologist 228:1573−90

doi: 10.1111/nph.16787
[30]

Chong L, Xu R, Ku L, Zhu Y. 2022. Beyond stress response: OST1 opening doors for plants to grow. Stress Biology 2:44

doi: 10.1007/s44154-022-00069-8
[31]

Chong L, Xu R, Huang P, Guo P, Zhu M, et al. 2022. The tomato OST1-VOZ1 module regulates drought-mediated flowering. The Plant Cell 34:2001−18

doi: 10.1093/plcell/koac026
[32]

Chen Q, Hu T, Li X, Song C, Zhu J, et al. 2022. Phosphorylation of SWEET sucrose transporters regulates plant root: shoot ratio under drought. Nature Plants 8:68−77

doi: 10.1038/s41477-021-01040-7
[33]

De Zelicourt A, Colcombet J, Hirt H. 2016. The role of MAPK modules and ABA during abiotic stress signaling. Trends in Plant Science 21:677−85

doi: 10.1016/j.tplants.2016.04.004
[34]

Danquah A, de Zelicourt A, Colcombet J, Hirt H. 2014. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnology Advances 32:40−52

doi: 10.1016/j.biotechadv.2013.09.006
[35]

Yu J, Kang L, Li Y, Wu C, Zheng C, et al. 2021. RING finger protein RGLG1 and RGLG2 negatively modulate MAPKKK18 mediated drought stress tolerance in Arabidopsis. Journal of Integrative Plant Biology 63:484−93

doi: 10.1111/jipb.13019
[36]

Cheng MC, Hsieh EJ, Chen JH, Chen HY, Lin TP. 2012. Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant Physiology 158:363−75

doi: 10.1104/pp.111.189738
[37]

Wang L, Zhao R, Li R, Yu W, Yang M, et al. 2018. Enhanced drought tolerance in tomato plants by overexpression of SlMAPK1. Plant Cell, Tissue and Organ Culture (PCTOC) 133:27−38

doi: 10.1007/s11240-017-1358-5
[38]

Wang L, Chen L, Li R, Zhao R, Yang M, et al. 2017. Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. Journal of Agricultural and Food Chemistry 65:8674−82

doi: 10.1021/acs.jafc.7b02745
[39]

Hoang XLT, Prerostova S, Thu NBA, Thao NP, Vankova R, et al. 2021. Histidine kinases: diverse functions in plant development and responses to environmental conditions. Annual Review of Plant Biology 72:297−323

doi: 10.1146/annurev-arplant-080720-093057
[40]

Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, et al. 2004. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. The Plant Cell 16:1365−77

doi: 10.1105/tpc.021477
[41]

Mushtaq N, Wang Y, Fan J, Li Y, Ding J. 2022. Down-regulation of cytokinin receptor gene SlHK2 improves plant tolerance to drought, heat, and combined stresses in tomato. Plants 11:154

doi: 10.3390/plants11020154
[42]

Thirumalaikumar VP, Devkar V, Mehterov N, Ali S, Ozgur R, et al. 2018. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnology Journal 16:354−66

doi: 10.1111/pbi.12776
[43]

Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, et al. 2005. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. The Plant Cell 17:3470−88

doi: 10.1105/tpc.105.035659
[44]

Gilroy S, Read ND, Trewavas AJ. 1990. Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature 346:769−71

doi: 10.1038/346769a0
[45]

Murata Y, Pei ZM, Mori IC, Schroeder J. 2001. Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. The Plant Cell 13:2513−23

doi: 10.1105/tpc.010210
[46]

Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J. 2002. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. The Plant Cell 14:3089−99

doi: 10.1105/tpc.007906
[47]

Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, et al. 2015. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant, Cell & Environment 38:35−49

doi: 10.1111/pce.12351
[48]

Nakashima K, Ito Y, Yamaguchi-Shinozaki K. 2009. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology 149:88−95

doi: 10.1104/pp.108.129791
[49]

Wang Z, Liu L, Cheng C, Ren Z, Xu S, et al. 2020. GAI functions in the plant response to dehydration stress in Arabidopsis thaliana. International Journal of Molecular Sciences 21:819

doi: 10.3390/ijms21030819
[50]

Li Q, Wang C, Jiang L, Li S, Sun S, et al. 2012. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Science Signaling 5:ra72

doi: 10.1126/scisignal.2002908
[51]

Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, et al. 2010. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. The Plant Journal 61:672−85

doi: 10.1111/j.1365-313X.2009.04092.x
[52]

Singh D, Laxmi A. 2015. Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Frontiers in Plant Science 6:895

doi: 10.3389/fpls.2015.00895
[53]

Todaka D, Shinozaki K, Yamaguchi-Shinozaki K. 2015. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Frontiers in Plant Science 6:84

doi: 10.3389/fpls.2015.00084
[54]

Nie S, Huang S, Wang S, Mao Y, Liu J, et al. 2019. Enhanced brassinosteroid signaling intensity via SlBRI1 overexpression negatively regulates drought resistance in a manner opposite of that via exogenous BR application in tomato. Plant Physiology and Biochemistry 138:36−47

doi: 10.1016/j.plaphy.2019.02.014
[55]

Mahesh K, Balaraju P, Ramakrishna B, Rao S. 2013. Effect of brassinosteroids on germination and seedling growth of radish (Raphanus sativus L.) under PEG-6000 induced water stress. American Journal of Plant Sciences 4:2305−13

doi: 10.4236/ajps.2013.412285
[56]

Behnamnia M, Kalantari M, Rezanejad F. 2009. Exogenous application of brassinosteroid alleviates drought-induced oxidative stress in Lycopersicon esculentum L. General and Applied Plant Physiology 35:22−34

[57]

Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. 2013. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiologia Plantarum 147:15−27

doi: 10.1111/j.1399-3054.2012.01635.x
[58]

Wang H, Tang J, Liu J, Hu J, Liu J, et al. 2018. Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2. Molecular Plant 11:315−25

doi: 10.1016/j.molp.2017.12.013
[59]

Wang Q, Yu F, Xie Q. 2020. Balancing growth and adaptation to stress: crosstalk between brassinosteroid and abscisic acid signaling. Plant, Cell & Environment 43:2325−35

doi: 10.1111/pce.13846
[60]

Zhao W, Huang H, Wang J, Wang X, Xu B, et al. 2023. Jasmonic acid enhances osmotic stress responses by MYC2-mediated inhibition of protein phosphatase 2C1 and response regulators 26 transcription factor in tomato. The Plant Journal 113:546−61

doi: 10.1111/tpj.16067
[61]

Huang H, Qiao H, Ma X, Zhao W, Sun L, et al. 2023. Roles of jasmonates in tomato growth, development and defense. Vegetable Research 3:14

doi: 10.48130/VR-2023-0014
[62]

Yao G, Li F, Nie Z, Bi M, Jiang H, et al. 2021. Ethylene, not ABA, is closely linked to the recovery of gas exchange after drought in four Caragana species. Plant, Cell & Environment 44:399−411

doi: 10.1111/pce.13934
[63]

Gu X, Smaill SJ, Wang B, Liu Z, Xu X, et al. 2022. Reducing plant-derived ethylene concentrations increases the resistance of temperate grassland to drought. Science of The Total Environment 846:157408

doi: 10.1016/j.scitotenv.2022.157408
[64]

Pan Y, Seymour GB, Lu C, Hu Z, Chen X, et al. 2012. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Reports 31:349−60

doi: 10.1007/s00299-011-1170-3
[65]

Salvi P, Manna M, Kaur H, Thakur T, Gandass N, et al. 2021. Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Reports 40:1305−29

doi: 10.1007/s00299-021-02683-8
[66]

Baillo EH, Kimotho RN, Zhang Z, Xu P. 2019. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 10:771

doi: 10.3390/genes10100771
[67]

Xu ZY, Kim SY, Hyeon DY, Kim DH, Dong T, et al. 2013. The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. The Plant Cell 25:4708−24

doi: 10.1105/tpc.113.119099
[68]

Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, et al. 2014. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Reports 33:1851−63

doi: 10.1007/s00299-014-1662-z
[69]

Jian W, Zheng Y, Yu T, Cao H, Chen Y, et al. 2021. SlNAC6, A NAC transcription factor, is involved in drought stress response and reproductive process in tomato. Journal of Plant Physiology 264:153483

doi: 10.1016/j.jplph.2021.153483
[70]

Achard P, Renou JP, Berthomé R, Harberd NP, Genschik P. 2008. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Current Biology 18:656−60

doi: 10.1016/j.cub.2008.04.034
[71]

Cao Y, Li K, Li Y, Zhao X, Wang L. 2020. MYB transcription factors as regulators of secondary metabolism in plants. Biology 9:61

doi: 10.3390/biology9030061
[72]

Cui J, Jiang N, Zhou X, Hou X, Yang G, et al. 2018. Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress. Planta 248:1487−503

doi: 10.1007/s00425-018-2987-6
[73]

Chen Y, Feng P, Zhang X, Xie Q, Chen G, et al. 2022. Silencing of SlMYB50 affects tolerance to drought and salt stress in tomato. Plant Physiology and Biochemistry 193:139−52

doi: 10.1016/j.plaphy.2022.10.026
[74]

Chen Y, Li L, Tang B, Wu T, Chen G, et al. 2022. Silencing of SlMYB55 affects plant flowering and enhances tolerance to drought and salt stress in tomato. Plant Science 316:111166

doi: 10.1016/j.plantsci.2021.111166
[75]

Feng K, Hou X, Xing G, Liu J, Duan A, et al. 2020. Advances in AP2/ERF super-family transcription factors in plant. Critical Reviews in Biotechnology 40:750−76

doi: 10.1080/07388551.2020.1768509
[76]

Ohme-Takagi M, Shinshi H. 1995. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. The Plant Cell 7:173−82

doi: 10.1105/tpc.7.2.173
[77]

Li Z, Tian Y, Xu J, Fu X, Gao J, et al. 2018. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000. Plant Physiology and Biochemistry 132:683−95

doi: 10.1016/j.plaphy.2018.08.022
[78]

Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK. 2010. Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Molecular Biology Reports 37:1125

doi: 10.1007/s11033-009-9885-8
[79]

Maqsood H, Munir F, Amir R, Gul A. 2022. Genome-wide identification, comprehensive characterization of transcription factors, cis-regulatory elements, protein homology, and protein interaction network of DREB gene family in Solanum lycopersicum. Frontiers in Plant Science 13:1031679

doi: 10.3389/fpls.2022.1031679
[80]

Li J, Sima W, Ouyang B, Wang T, Ziaf K, et al. 2012. Tomato SlDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthesis. Journal of Experimental Botany 63:6407−20

doi: 10.1093/jxb/ers295
[81]

Zhao Y, Zheng Y, Jiang L, Niu Y, Yang Y, et al. 2022. Identification of stress-related characteristics of the WRKY gene family: a case study of Dendrobium catenatum. Ornamental Plant Research 2:21

doi: 10.48130/OPR-2022-0021
[82]

Chen W, Zheng C, Yao M, Chen L. 2021. The tea plant CsWRKY26 promotes drought tolerance in transgenic Arabidopsis plants. Beverage Plant Research 1:3

doi: 10.48130/BPR-2021-0003
[83]

Ahammed GJ, Li X, Mao Q, Wan H, Zhou G, et al. 2021. The SlWRKY81 transcription factor inhibits stomatal closure by attenuating nitric oxide accumulation in the guard cells of tomato under drought. Physiologia Plantarum 172:885−95

doi: 10.1111/ppl.13243
[84]

Gao Z, Bao Y, Wang Z, Sun X, Zhao T, et al. 2022. Gene silencing of SLZF57 reduces drought stress tolerance in tomato. Plant Cell, Tissue and Organ Culture (PCTOC) 150:97−104

doi: 10.1007/s11240-022-02247-y
[85]

Rai AC, Singh M, Shah K. 2013. Engineering drought tolerant tomato plants over-expressing BcZAT12 gene encoding a C2H2 zinc finger transcription factor. Phytochemistry 85:44−50

doi: 10.1016/j.phytochem.2012.09.007
[86]

Shah K, Singh M, Rai AC. 2013. Effect of heat-shock induced oxidative stress is suppressed in BcZAT12 expressing drought tolerant tomato. Phytochemistry 95:109−17

doi: 10.1016/j.phytochem.2013.07.026
[87]

Zhu M, Meng X, Cai J, Li G, Dong T, et al. 2018. Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biology 18:83

doi: 10.1186/s12870-018-1299-0
[88]

Pan Y, Hu X, Li C, Xu X, Su C, et al. 2017. SlbZIP38, a tomato bZIP family gene downregulated by abscisic acid, is a negative regulator of drought and salt stress tolerance. Genes 8:402

doi: 10.3390/genes8120402
[89]

Bao Y, Song W, Wang P, Yu X, Li B, et al. 2020. COST1 regulates autophagy to control plant drought tolerance. Proceedings of the National Academy of Sciences of the United States of America 117:7482−93

doi: 10.1073/pnas.1918539117
[90]

Bao Y, Bassham DC. 2020. COST1 balances plant growth and stress tolerance via attenuation of autophagy. Autophagy 16:1157−58

doi: 10.1080/15548627.2020.1752981
[91]

Christmann A, Grill E. 2018. Peptide signal alerts plants to drought. Nature 556:178−79

doi: 10.1038/d41586-018-03872-4
[92]

Asano T, Hayashi N, Kikuchi S, Ohsugi R. 2012. CDPK-mediated abiotic stress signaling. Plant Signaling & Behavior 7:817−21

doi: 10.4161/psb.20351
[93]

Bi Z, Wang Y, Li P, Sun C, Qin T, et al. 2021. Evolution and expression analysis of CDPK genes under drought stress in two varieties of potato. Biotechnology Letters 43:511−21

doi: 10.1007/s10529-020-03037-2
[94]

Dekomah SD, Wang Y, Qin T, Xu D, Sun C, et al. 2022. Identification and expression analysis of Calcium-dependent protein kinases gene family in potato under drought stress. Frontiers in Genetics 13:874397

doi: 10.3389/fgene.2022.874397
[95]

Candar-Cakir B, Arican E, Zhang B. 2016. Small RNA and degradome deep sequencing reveals drought-and tissue-specific micrornas and their important roles in drought-sensitive and drought-tolerant tomato genotypes. Plant Biotechnology Journal 14:1727−46

doi: 10.1111/pbi.12533
[96]

Li Q, Shen H, Yuan S, Dai X, Yang C. 2022. miRNAs and lncRNAs in tomato: roles in biotic and abiotic stress responses. Frontiers in Plant Science 13:1094459

doi: 10.3389/fpls.2022.1094459
[97]

Chen L, Meng J, Luan Y. 2019. miR1916 plays a role as a negative regulator in drought stress resistance in tomato and tobacco. Biochemical and Biophysical Research Communications 508:597−602

doi: 10.1016/j.bbrc.2018.11.165
[98]

Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, et al. 2011. Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnology Letters 33:403−9

doi: 10.1007/s10529-010-0436-0
[99]

Li N, Wang Y, Zheng R, Song X. 2022. Research progress on biological functions of lncRNAs in major vegetable crops. Vegetable Research 2:14

doi: 10.48130/VR-2022-0014
[100]

Chong L, Zhu Y. 2022. Mass spectrometry-based proteomics for abiotic stress studies. Trends in Plant Science 27:729−30

doi: 10.1016/j.tplants.2021.12.013