[1] |
Marcelis LFM, Netherlands WUT, Costa JM, Heuvelink E, de Lisboa Portugal U, et al. 2019. Achieving sustainable greenhouse production: present status, recent advances and future developments, eds. Marcelis LFM, Netherlands WUT. London: Burleigh Dodds Science Publishing. pp. 1−14. https://doi.org/10.19103/as.2019.0052.01 |
[2] |
Gruda NS. 2019. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 9:298 doi: 10.3390/agronomy9060298 |
[3] |
Álvarez JM, Pasian C, Lal R, López R, Díaz MJ, et al. 2018. Morpho-physiological plant quality when biochar and vermicompost are used as growing media replacement in urban horticulture. Urban Forestry & Urban Greening 34:175−80 doi: 10.1016/j.ufug.2018.06.021 |
[4] |
Eulenstein F, Schindler U, Saljnikov E, Klemm M, Lühmann T, et al. 2021. Development of alternative growing media with hydrochar from extensive grassland biomass and evaluation of their soil-chemical quality. Acta Horticulturae 1305:263−70 doi: 10.17660/ActaHortic.2021.1305.36 |
[5] |
Fryda L, Visser R, Schmidt J. 2019. Biochar replaces peat in horticulture: environmental impact assessment of combined biochar & bioenergy production. Detritus 5:132−49 doi: 10.31025/2611-4135/2019.13778 |
[6] |
Regmi A, Singh S, Moustaid-Moussa N, Coldren C, Simpson C. 2022. The negative effects of high rates of biochar on violas can be counteracted with fertilizer. Plants 11:491 doi: 10.3390/plants11040491 |
[7] |
Luo X, Liu G, Xia Y, Chen L, Jiang Z, et al. 2017. Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. Journal of Soils and Sediments 17:780−89 doi: 10.1007/s11368-016-1361-1 |
[8] |
Venkataramani S, Kafle A, Singh M, Singh S, Simpson C, et al. 2023. Greenhouse cultivation of cucumber (Cucumis sativus L.) in standard soilless media amended with biochar and compost. HortScience 58:1035−44 doi: 10.21273/HORTSCI17257-23 |
[9] |
Zheng H, Wang X, Chen L, Wang Z, Xia Y, et al. 2018. Enhanced growth of halophyte plants in biochar-amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation. Plant, Cell & Environment 41:517−32 doi: 10.1111/pce.12944 |
[10] |
Vista SP, Khadka A. 2017. Determining appropriate dose of biochar for vegetables. Journal of Pharmacognosy and Phytochemistry 6:673−77 |
[11] |
Luo X, Wang Z, Meki K, Wang X, Liu B, et al. 2019. Effect of co-application of wood vinegar and biochar on seed germination and seedling growth. Journal of Soils and Sediments 19:3934−44 doi: 10.1007/s11368-019-02365-9 |
[12] |
Dumroese RK, Heiskanen J, Englund K, Tervahauta A. 2011. Pelleted biochar: chemical and physical properties show potential use as a substrate in container nurseries. Biomass and Bioenergy 35:2018−27 doi: 10.1016/j.biombioe.2011.01.053 |
[13] |
Steiner C, Harttung T. 2014. Biochar as a growing media additive and peat substitute. Solid Earth 5:995−99 doi: 10.5194/se-5-995-2014 |
[14] |
Leskovar DI, Stoffella PJ. 1995. Vegetable seedling root systems: morphology, development, and importance. HortScience 30:1153−59 doi: 10.21273/HORTSCI.30.6.1153 |
[15] |
Nair A, Carpenter B. 2016. Biochar rate and transplant tray cell number have implications on pepper growth during transplant production. HortTechnology 26:713−19 doi: 10.21273/HORTTECH03490-16 |
[16] |
Bu X, Ji H, Ma W, Mu C, Xian T, et al. 2022. Effects of biochar as a peat-based substrate component on morphological, photosynthetic and biochemical characteristics of Rhododendron delavayi Franch. Scientia Horticulturae 302:111148 doi: 10.1016/j.scienta.2022.111148 |
[17] |
USDA. 2021. Fresh cucumber imports capture nearly 90 percent of the U.S. market. Economic Research Service. https://www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=101346 |
[18] |
Singh M, Singh S, Parkash V, Ritchie G, Wallace RW, et al. 2022. Biochar implications under limited irrigation for sweet corn production in a semi-arid environment. Frontiers in Plant Science 13:853746 doi: 10.3389/fpls.2022.853746 |
[19] |
Agathokleous E, Belz RG, Kitao M, Koike T, Calabrese EJ. 2019. Does the root to shoot ratio show a hormetic response to stress? An ecological and environmental perspective Journal of Forestry Research 30:1569−80 doi: 10.1007/s11676-018-0863-7 |
[20] |
Parkash V, Singh S, Singh M, Deb SK, Ritchie GL, et al. 2021. Effect of deficit irrigation on root growth, soil water depletion, and water use efficiency of cucumber. HortScience 56:1278−86 doi: 10.21273/HORTSCI16052-21 |
[21] |
Martins TC, Machado RMA, Alves-Pereira I, Ferreira R, Gruda NS. 2023. Coir-based growing media with municipal compost and biochar and their impacts on growth and some quality parameters in lettuce seedlings. Horticulturae 9:105 doi: 10.3390/horticulturae9010105 |
[22] |
Dispenza V, De Pasquale C, Fascella G, Mammano MM, Alonzo G. 2016. Use of biochar as peat substitute for growing substrates of Euphorbia × lomi potted plants. Spanish Journal of Agricultural Research 14:e0908 doi: 10.5424/sjar/2016144-9082 |
[23] |
Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil 348:439−51 doi: 10.1007/s11104-011-0948-y |
[24] |
Zhang L, Sun X, Tian Y, Gong X. 2014. Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Scientia Horticulturae 176:70−78 doi: 10.1016/j.scienta.2014.06.021 |
[25] |
Huang L, Gu M. 2019. Effects of biochar on container substrate properties and growth of plants—a review. Horticulturae 5:14 doi: 10.3390/horticulturae5010014 |
[26] |
Fan R, Luo J, Yan S, Zhou Y, Zhang Z. 2015. Effects of biochar and super absorbent polymer on substrate properties and water spinach growth. Pedosphere 25:737−48 doi: 10.1016/S1002-0160(15)30055-2 |
[27] |
Chartzoulakis KS. 1992. Effects of NaCl salinity on germination, growth and yield of greenhouse cucumber. Journal of Horticultural Science 67:115−19 doi: 10.1080/00221589.1992.11516227 |
[28] |
Kim HS, Kim KR, Yang JE, Ok YS, Kim WI, et al. 2017. Amelioration of horticultural growing media properties through rice hull biochar incorporation. Waste and Biomass Valorization 8:483−92 doi: 10.1007/s12649-016-9588-z |
[29] |
Nieto A, Gascó G, Paz-Ferreiro J, Fernández JM, Plaza C, et al. 2016. The effect of pruning waste and biochar addition on brown peat based growing media properties. Scientia Horticulturae 199:142−48 doi: 10.1016/j.scienta.2015.12.012 |
[30] |
Ghanbarian B, Daigle H. 2016. Thermal conductivity in porous media: percolation-based effective-medium approximation. Water Resources Research 52:295−314 doi: 10.1002/2015WR017236 |
[31] |
Javid F. 2015. Analysis of heat transfer through porous perlite with varying pore size and moisture content. Doctoral dissertation, Southern Illinois University, Edwardsville. |
[32] |
Balliu A, Zheng Y, Sallaku G, Fernández JA, Gruda NS, et al. 2021. Environmental and cultivation factors affect the morphology, architecture and performance of root systems in soilless grown plants. Horticulturae 7:243 doi: 10.3390/horticulturae7080243 |
[33] |
Vaughn SF, Byars JA, Jackson MA, Peterson SC, Eller FJ. 2021. Tomato seed germination and transplant growth in a commercial potting substrate amended with nutrient-preconditioned Eastern red cedar (Juniperus virginiana L.) wood biochar. Scientia Horticulturae 280:109947 doi: 10.1016/j.scienta.2021.109947 |
[34] |
Liopa-Tsakalidi A, Barouchas PE. 2017. Effects of biochar on pepperoncini (Capsicum annuum L cv. Stavros) germination and seedling growth in two soil types. Australian Journal of Crop Science 11:264−70 doi: 10.21475/ajcs.17.11.03.pne328 |
[35] |
Ma G, Mao H, Bu Q, Han L, Shabbir A, et al. 2020. Effect of compound biochar substrate on the root growth of cucumber plug seedlings. Agronomy 10:1080 doi: 10.3390/agronomy10081080 |
[36] |
Revell KT, Maguire RO, Agblevor FA. 2012. Influence of poultry litter biochar on soil properties and plant growth. Soil Science 177:402−08 doi: 10.1097/SS.0b013e3182564202 |
[37] |
Bargmann I, Rillig MC, Buss W, Kruse A, Kuecke M. 2013. Hydrochar and biochar effects on germination of spring barley. Journal of Agronomy and Crop Science 199:360−73 doi: 10.1111/jac.12024 |
[38] |
Rogovska N, Laird D, Cruse RM, Trabue S, Heaton E. 2012. Germination tests for assessing biochar quality. Journal of Environmental Quality 41:1014−22 doi: 10.2134/jeq2011.0103 |
[39] |
Solaiman ZM, Murphy DV, Abbott LK. 2012. Biochars influence seed germination and early growth of seedlings. Plant and Soil 353:273−87 doi: 10.1007/s11104-011-1031-4 |
[40] |
Gaskin JW, Steiner C, Harris K, Das KC, Bibens B. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE 51:2061−69 doi: 10.13031/2013.25409 |
[41] |
Mumme J, Getz J, Prasad M, Lüder U, Kern J, Mašek O, et al. 2018. Toxicity screening of biochar-mineral composites using germination tests. Chemosphere 207:91−100 doi: 10.1016/j.chemosphere.2018.05.042 |
[42] |
Headlee WL, Brewer CE, Hall RB. 2014. Biochar as a substitute for vermiculite in potting mix for hybrid poplar. BioEnergy Research 7:120−31 doi: 10.1007/s12155-013-9355-y |
[43] |
Tian Y, Sun X, Li S, Wang H, Wang L, et al. 2012. Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata. Scientia Horticulturae 143:15−18 doi: 10.1016/j.scienta.2012.05.018 |
[44] |
Tosca A, Valagussa M, Martinetti L, Frangi P. 2021. Biochar and green compost as peat alternatives in the cultivation of photinia and olive tree. Acta Horticulturae 1305:257−62 doi: 10.17660/ActaHortic.2021.1305.35 |
[45] |
Zulfiqar F, Younis A, Chen J. 2019. Biochar or biochar-compost amendment to a peat-based substrate improves growth of Syngonium podophyllum. Agronomy 9:460 doi: 10.3390/agronomy9080460 |
[46] |
Parkash V, Singh S. 2020. Potential of biochar application to mitigate salinity stress in eggplant. HortScience 55:1946−55 doi: 10.21273/HORTSCI15398-20 |
[47] |
Regmi A, Poudyal S, Singh S, Coldren C, Moustaid-Moussa N, et al. 2023. Biochar influences phytochemical concentrations of Viola cornuta flowers. Sustainability 15:3882 doi: 10.3390/su15053882 |
[48] |
Jiménez-Arias D, García-Machado FJ, Morales-Sierra S, García-García AL, Herrera AJ, et al. 2021. A beginner's guide to osmoprotection by biostimulants. Plants 10:363 doi: 10.3390/plants10020363 |
[49] |
Sani MNH, Yong JWH. 2022. Harnessing synergistic biostimulatory processes: a plausible approach for enhanced crop growth and resilience in organic farming. Biology 11:41 doi: 10.3390/biology11010041 |
[50] |
Tüzel Y, Balliu A. 2020. Advances in liquid-and solid-medium soilless culture systems. In Advances in Horticultural Soilless Culture, eds Gruda NS. London: Burleigh Dodds Science Publishing. pp. 213−48. https://doi.org/10.1201/9781003048206-10 |
[51] |
Shi K, Hu W, Dong D, Zhou Y, Yu J. 2007. Low O2 supply is involved in the poor growth in root-restricted plants of tomato (Lycopersicon esculentum Mill.). Environmental and Experimental Botany 61:181−89 doi: 10.1016/j.envexpbot.2007.05.010 |
[52] |
Judd LA, Jackson BE, Fonteno WC. 2015. Advancements in root growth measurement technologies and observation capabilities for container-grown plants. Plants 4:369−92 doi: 10.3390/plants4030369 |
[53] |
Wraith JM, Wright CK. 1998. Soil water and root growth. HortScience 33:951−59 doi: 10.21273/HORTSCI.33.6.951 |
[54] |
Jones JB. 1985. Growing plants hydroponically. The American Biology Teacher 47:356−58 doi: 10.2307/4448083 |
[55] |
Bláha L. 2019. Importance of root-shoot ratio for crops production. Journal of Agronomy & Agricultural Science 2:12 doi: 10.24966/aas-8292/100012 |