[1] |
Li QZ, Wang HY. 2011. Present status and prospects of research on fermented meat products. Food Science 32:247−51(in Chinese) |
[2] |
Westphalen AD, Briggs JL, Lonergan SM. 2006. Influence of muscle type on rheological properties of porcine myofibrillar protein during heat-induced gelation. Meat Science 72:697−703 doi: 10.1016/j.meatsci.2005.09.021 |
[3] |
Zhang Y, Lu Y, Chen F. 2023. Relationship between physicochemical properties and microbial structural distribution of Chinese-style and Salami fermented sausages. Food Bioscience 53:102583 doi: 10.1016/j.fbio.2023.102583 |
[4] |
Li X, Li X, Nan Q, Yang J. 1997. Application of lactic acid bacteria starter in meat products. Meat Research 1997(1):19−22+25(in Chinese) |
[5] |
Shan K, Yao Y, Wang J, Zhou T, Zeng X, et al. 2023. Effect of probiotic Bacillus cereus DM423 on the flavor formation of fermented sausage. Food Research International 172:113210 doi: 10.1016/j.foodres.2023.113210 |
[6] |
Li Y, Cao Z, Yu Z, Zhu Y, Zhao K. 2023. Effect of inoculating mixed starter cultures of Lactobacillus and Staphylococcus on bacterial communities and volatile flavor in fermented sausages. Food Science and Human Wellness 12:200−11 doi: 10.1016/j.fshw.2022.07.010 |
[7] |
Hu Y, Li Y, Zhu J, Kong B, Liu Q, et al. 2021. Improving the taste profile of reduced-salt dry sausage by inoculating different lactic acid bacteria. Food Research International 145:110391 doi: 10.1016/j.foodres.2021.110391 |
[8] |
Hu Y, Li Y, Li XA, Zhang H, Chen Q, et al. 2022. Application of lactic acid bacteria for improving the quality of reduced-salt dry fermented sausage: Texture, color, and flavor profiles. LWT 154:112723 doi: 10.1016/j.lwt.2021.112723 |
[9] |
Zhao X, Xu X, Zhou G. 2021. Covalent chemical modification of myofibrillar proteins to improve their gelation properties: A systematic review. Comprehensive Reviews in Food Science and Food Safety 20:924−59 doi: 10.1111/1541-4337.12684 |
[10] |
Jiang J, Xiong YL. 2015. Role of interfacial protein membrane in oxidative stability of vegetable oil substitution emulsions applicable to nutritionally modified sausage. Meat Science 109:56−65 doi: 10.1016/j.meatsci.2015.05.011 |
[11] |
Li H, Wang Y, Liu Y, Yu H, Li H, et al. 2020. Effects of thermal, stretching and melting treatments on quality, intermolecular force and microstructure of Mozzarella cheese. Food Science 41:30−16 doi: 10.7506/spkx1002-6630-20181205-065 |
[12] |
Zdolec N, Mikuš T, Kiš M. 2022. Lactic acid bacteria in meat fermentation: Dry sausage safety and quality. In Lactic Acid Bacteria in Food Biotechnology, eds. Ray RC, Paramithiotis S, de Carvalho Azevedo VA, Montet D. Amsterdam, Netherlands: Elsevier. pp. 145−59. https://doi.org/10.1016/b978-0-323-89875-1.00007-9 |
[13] |
Vila G, Segura JA, Ludemann V, Pose GN. 2019. Surface mycobiota of home-made dry cured sausages from the main producing regions of Argentina and morphological and biochemical characterization of Penicillium nalgiovense populations. International Journal of Food Microbiology 309:108312 doi: 10.1016/j.ijfoodmicro.2019.108312 |
[14] |
Cano-García L, Belloch C, Flores M. 2014. Impact of Debaryomyces hansenii strains inoculation on the quality of slow dry-cured fermented sausages. Meat Science 96:1469−77 doi: 10.1016/j.meatsci.2013.12.011 |
[15] |
Corral S, Belloch C, López-Díez JJ, Salvador A, Flores M. 2017. Yeast inoculation as a strategy to improve the physico-chemical and sensory properties of reduced salt fermented sausages produced with entire male fat. Meat Science 123:1−7 doi: 10.1016/j.meatsci.2016.08.007 |
[16] |
Jiang Y, Li D, Tu J, Zhong Y, Zhang D, et al. 2021. Mechanisms of change in gel water-holding capacity of myofibrillar proteins affected by lipid oxidation: The role of protein unfolding and cross-linking. Food Chemistry 344:128587 doi: 10.1016/j.foodchem.2020.128587 |
[17] |
Paker I, Beamer S, Jaczynski J, Matak KE. 2013. The effect of organic acids on gelation characteristics of protein gels made from silver carp (Hypophthalmichthys molitrix) protein recovered by isoelectric solubilization and precipitation. LWT - Food Science and Technology 53:37−43 doi: 10.1016/j.lwt.2013.02.003 |
[18] |
Xu Y, Xia W, Yang F, Nie X. 2010. Protein molecular interactions involved in the gel network formation of fermented silver carp mince inoculated with Pediococcus pentosaceus. Food Chemistry 120:717−23 doi: 10.1016/j.foodchem.2009.10.068 |
[19] |
Ge Q, Pei H, Liu R, Chen L, Gao X, et al. 2019. Effects of Lactobacillus plantarum NJAU-01 from Jinhua ham on the quality of dry-cured fermented sausage. LWT 101:513−18 doi: 10.1016/j.lwt.2018.11.081 |
[20] |
Mi G, Yan HW, Li YJ, Li JR. 2019. Quality comparison of Dosidicus gigas sausages with heat- and organic acid-induced protein gelation. Food Science 40:56−61 doi: 10.7506/spkx1002-6630-20171227-338 |
[21] |
Omura F, Takahashi K, Okazaki E, Osako K. 2020. A novel and simple non-thermal procedure for preparing low-pH-induced surimi gel from Alaska pollock (Theragra chalcogramma) using glucose oxidase. Food Chemistry 321:126722 doi: 10.1016/j.foodchem.2020.126722 |
[22] |
Shen H, Stephen Elmore J, Zhao M, Sun W. 2020. Effect of oxidation on the gel properties of porcine myofibrillar proteins and their binding abilities with selected flavour compounds. Food Chemistry 329:127032 doi: 10.1016/j.foodchem.2020.127032 |
[23] |
Zhao B, Zhang S, Li S, Zhou H, Ren S, et al. 2018. Effect of lipid oxidation on myofibrillar protein oxidation, structure and functional characteristics. Food Science 39(5):40−46(in Chinese) doi: 10.7506/spkx1002-6630-201805007 |
[24] |
Hu C, Xie J. 2021. Progress in understanding the effect of protein oxidation on the eating quality of meat. Food Science 42(17):275−81(in Chinese) doi: 10.7506/spkx1002-6630-20200913-159 |
[25] |
Yang M, Tian J, Jing Z, Zhao L, Zhang K, et al. 2018. Progress in understanding the antioxidant regulation system of lactic acid bacteria. Food Science 39(15):290−95(in Chinese) doi: 10.7506/spkx1002-6630-201815042 |
[26] |
Li Q, Zhang K, Zhao Y, Ma M, Cao K, et al. 2020. Antioxidation properties in vitro and in vivo of Lactobacillus in air-dried mutton. Microbiology China 47(12):4094−104(in Chinese) doi: 10.13344/j.microbiol.china.200099 |
[27] |
Mei L, Pan D, Guo T, Ren H, Wang L. 2022. Role of Lactobacillus plantarum with antioxidation properties on Chinese sausages. Lwt 162:113427 doi: 10.1016/j.lwt.2022.113427 |
[28] |
Li S, Ma Y, Ji T, Sameen DE, Ahmed S, et al. 2020. Cassava starch/carboxymethylcellulose edible films embedded with lactic acid bacteria to extend the shelf life of banana. Carbohydrate Polymers 248:116805 doi: 10.1016/j.carbpol.2020.116805 |
[29] |
Lynch KM, Zannini E, Coffey A, Arendt EK. 2018. Lactic acid bacteria exopolysaccharides in foods and beverages: isolation, properties, characterization, and health benefits. Annual Review of Food Science and Technology 9:155−76 doi: 10.1146/annurev-food-030117-012537 |
[30] |
Khanal SN, Lucey JA. 2018. Effect of fermentation temperature on the properties of exopolysaccharides and the acid gelation behavior for milk fermented by Streptococcus thermophilus strains DGCC7785 and St-143. Journal of Dairy Science 101:3799−811 doi: 10.3168/jds.2017-13203 |
[31] |
Dertli E, Yilmaz MT, Tatlisu NB, Toker OS, Cankurt H, et al. 2016. Effects of in situ exopolysaccharide production and fermentation conditions on physicochemical, microbiological, textural and microstructural properties of Turkish-type fermented sausage (sucuk). Meat Science 121:156−65 doi: 10.1016/j.meatsci.2016.06.008 |
[32] |
Cai M, Hao X, Luo T, Chen C, Cao Y, et al. 2021. Processing properties of yogurt affected by the exopolysaccharide produced by Lactobacillus plantarum YW11. Food Science 42(14):39−45(in Chinese) doi: 10.7506/spkx1002-6630-20200511-115 |
[33] |
Yang X, Ke C, Li L. 2021. Physicochemical, rheological and digestive characteristics of soy protein isolate gel induced by lactic acid bacteria. Journal of Food Engineering 292:110243 doi: 10.1016/j.jfoodeng.2020.110243 |
[34] |
Ahhmed AM, Kawahara S, Ohta K, Nakade K, Soeda T, et al. 2007. Differentiation in improvements of gel strength in chicken and beef sausages induced by transglutaminase. Meat Science 76:455−62 doi: 10.1016/j.meatsci.2007.01.002 |
[35] |
Liang F, Lin L, He T, Zhou X, Jiang S, et al. 2020. Effect of transglutaminase on gel properties of surimi and precocious Chinese mitten crab (Eriocheir sinensis) meat. Food Hydrocolloids 98:105261 doi: 10.1016/j.foodhyd.2019.105261 |
[36] |
Yang M, Zhou Y, Fang X, Yin J, Chen X, et al. 2021. Effect of transglutaminase on the quality of mandarin fish (Siniperca chuatsi) surimi gel. Food Science 42(12):37−44(in Chinese) doi: 10.7506/spkx1002-6630-20201009-055 |
[37] |
Wang H, Liu J, Chen Q, Kong B, Sun F. 2021. Biochemical properties of extracellular protease from Staphylococcus epidermidis isolated from Harbin dry sausages and its hydrolysis of meat protein. Food Bioscience 42:101130 doi: 10.1016/j.fbio.2021.101130 |
[38] |
Ikonic P, Jokanovic M, Tasic T, Skaljac S, Sojic B, et al. 2015. The effect of different ripening conditions on proteolysis and texture of dry-fermented sausage Petrovská klobása. Procedia Food Science 5:97−100 doi: 10.1016/j.profoo.2015.09.026 |
[39] |
Essid I, Hassouna M. 2013. Effect of inoculation of selected Staphylococcus xylosus and Lactobacillus plantarum strains on biochemical, microbiological and textural characteristics of a Tunisian dry fermented sausage. Food Control 32:707−14 doi: 10.1016/j.foodcont.2013.02.003 |
[40] |
Wang H, Xu J, Liu Q, Xia X, Sun F, et al. 2022. Effect of the protease from Staphylococcus carnosus on the proteolysis, quality characteristics, and flavor development of Harbin dry sausage. Meat Science 189:108827 doi: 10.1016/j.meatsci.2022.108827 |
[41] |
Ferrini G, Arnau J, Guàrdia MD, Comaposada J. 2014. The effect of thermal processing condition on the physicochemical and sensory characteristics of fermented sausages dried by Quick-Dry-Slice process®. Meat Science 96:688−94 doi: 10.1016/j.meatsci.2013.10.005 |
[42] |
Westphalen AD, Briggs JL, Lonergan SM. 2005. Influence of pH on rheological properties of porcine myofibrillar protein during heat induced gelation. Meat Science 70:293−99 doi: 10.1016/j.meatsci.2005.01.015 |
[43] |
Chen B, Zhou K, Wang Y, Xie Y, Wang Z, et al. 2020. Insight into the mechanism of textural deterioration of myofibrillar protein gels at high temperature conditions. Food Chemistry 330:127186 doi: 10.1016/j.foodchem.2020.127186 |
[44] |
Wang Z, Tian H, Zhou F, Zhang Z, He J, et al. 2020. Effect of heating temperature on myofibrillar protein structure and gel properties of sheldrake breast muscle. Food Science 41(13):61−68(in Chinese) doi: 10.7506/spkx1002-6630-20191128-280 |
[45] |
Dučić M, Barcenilla C, Cobo-Díaz JF, López M, Álvarez-Ordóñez A, et al. 2023. High pressure processing at the early stages of ripening enhances the safety and quality of dry fermented sausages elaborated with or without starter culture. Food Research International 163:112162 doi: 10.1016/j.foodres.2022.112162 |
[46] |
Stollewerk K, Jofré A, Comaposada J, Arnau J, Garriga M. 2014. Food safety and microbiological quality aspects of QDS process® and high pressure treatment of fermented fish sausages. Food Control 38:130−35 doi: 10.1016/j.foodcont.2013.10.009 |
[47] |
Omer MK, Prieto B, Rendueles E, Alvarez-Ordoñez A, Lunde K, et al. 2015. Microbiological, physicochemical and sensory parameters of dry fermented sausages manufactured with high hydrostatic pressure processed raw meat. Meat Science 108:115−19 doi: 10.1016/j.meatsci.2015.05.002 |
[48] |
Bai Y, Zeng X, Zhang C, Zhang T, Wang C, et al. 2021. Effects of high hydrostatic pressure treatment on the emulsifying behavior of myosin and its underlying mechanism. LWT 146:111397 doi: 10.1016/j.lwt.2021.111397 |
[49] |
Wang L, Xia M, Zhou Y, Wang X, Ma J, et al. 2020. Gel properties of grass carp myofibrillar protein modified by low-frequency magnetic field during two-stage water bath heating. Food Hydrocolloids 107:105920 doi: 10.1016/j.foodhyd.2020.105920 |
[50] |
Shi H, Zhang X, Chen X, Fang R, Zou Y, et al. 2020. How ultrasound combined with potassium alginate marination tenderizes old chicken breast meat: Possible mechanisms from tissue to protein. Food Chemistry 328:127144 doi: 10.1016/j.foodchem.2020.127144 |
[51] |
Singh MK, Singh A. 2021. Characterization of Polymers and Fibers. UK: Woodhead Publishing. https://doi.org/10.1016/C2020-0-00727-9 |
[52] |
Pereira J, Sathuvan M, Lorenzo JM, Boateng EF, Brohi SA, et al. 2021. Insight into the effects of coconut kernel fiber on the functional and microstructural properties of myofibrillar protein gel system. LWT 138:110745 doi: 10.1016/j.lwt.2020.110745 |
[53] |
Chen B, Guo J, Xie Y, Zhou K, Li P, et al. 2021. Modulating the aggregation of myofibrillar protein to alleviate the textural deterioration of protein gels at high temperature: The effect of hydrophobic interactions. Food Chemistry 341:128274 doi: 10.1016/j.foodchem.2020.128274 |
[54] |
Tong Q, Chen L, Wang W, Zhang Z, Yu X, et al. 2018. Effects of konjac glucomannan and acetylated distarch phosphate on the gel properties of pork meat myofibrillar proteins. Journal of Food Science and Technology 55:2899−909 doi: 10.1007/s13197-018-3208-9 |
[55] |
Liu W, Lanier TC. 2015. Combined use of variable pressure scanning electron microscopy and confocal laser scanning microscopy best reveal microstructure of comminuted meat gels. LWT - Food Science and Technology 62:1027−33 doi: 10.1016/j.lwt.2015.02.001 |
[56] |
Berthomieu C, Hienerwadel R. 2009. Fourier transform infrared (FTIR) spectroscopy. Photosynthesis research 101:157−70 doi: 10.1007/s11120-009-9439-x |
[57] |
Barrera FN. 2022. The advance that realized the potential of protein Fourier-transform infrared spectroscopy. Archives Of Biochemistry And Biophysics 726:109114 doi: 10.1016/j.abb.2021.109114 |
[58] |
Ma Y, Wang Y, Jiang S, Zeng M. 2022. Effect of gelatin on gelation properties of oyster (Crassostrea gigas) protein. Lwt 158:113143 doi: 10.1016/j.lwt.2022.113143 |
[59] |
Xu L, Lv Y, Su Y, Chang C, Gu L, et al. 2022. Enhancing gelling properties of high internal phase emulsion-filled chicken gels: Effect of droplet fractions and salts. Food Chemistry 367:130663 doi: 10.1016/j.foodchem.2021.130663 |
[60] |
Collell C, Gou P, Arnau J, Muñoz I, Comaposada J. 2012. NIR technology for on-line determination of superficial aw and moisture content during the drying process of fermented sausages. Food Chemistry 135:1750−55 doi: 10.1016/j.foodchem.2012.06.036 |
[61] |
Yan B, Jiao X, Zhu H, Wang Q, Huang J, et al. 2020. Chemical interactions involved in microwave heat-induced surimi gel fortified with fish oil and its formation mechanism. Food Hydrocolloids 105:105779 doi: 10.1016/j.foodhyd.2020.105779 |
[62] |
Li X, Fan M, Huang Q, Zhao S, Xiong S, et al. 2022. Effect of micro- and nano-starch on the gel properties, microstructure and water mobility of myofibrillar protein from grass carp. Food Chemistry 366:130579 doi: 10.1016/j.foodchem.2021.130579 |
[63] |
Singh MK, Singh A. 2022. Nuclear magnetic resonance spectroscopy. In Characterization of polymers and fibers. UK: Woodhead Publishing. pp. 321−39. https://doi.org/10.1016/B978-0-12-823986-5.00011-7 |
[64] |
Pajuelo A, Sánchez S, Pérez-Palacios T, Caballero D, Díaz J, et al. 2022. 1H NMR to analyse the lipid profile in the glyceride fraction of different categories of Iberian dry-cured hams. Food Chemistry 383:132371 doi: 10.1016/j.foodchem.2022.132371 |
[65] |
Miklos R, Mora-Gallego H, Larsen FH, Serra X, Cheong LZ, et al. 2014. Influence of lipid type on water and fat mobility in fermented sausages studied by low-field NMR. Meat Science 96:617−22 doi: 10.1016/j.meatsci.2013.08.025 |
[66] |
Liu C, Li W, Lin B, Yi S, Ye B, et al. 2021. Comprehensive analysis of ozone water rinsing on the water-holding capacity of grass carp surimi gel. LWT 150:111919 doi: 10.1016/j.lwt.2021.111919 |