[1] |
Hu B, Chen S, Hu J, Xia F, Xu J, et al. 2017. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution. PLoS ONE 12:e0172438 doi: 10.1371/journal.pone.0172438 |
[2] |
Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, et al. 2010. Significant acidification in major Chinese croplands. Science 327:1008−10 doi: 10.1126/science.1182570 |
[3] |
Motesharrei S, Rivas J, Kalnay E, Asrar GR, Busalacchi AJ, et al. 2016. Modeling sustainability: population, inequality, consumption, and bidirectional coupling of the Earth and Human Systems. National Science Review 3:470−94 doi: 10.1093/nsr/nww081 |
[4] |
Rascio N, Navari-Izzo F. 2011. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science 180:169−81 doi: 10.1016/j.plantsci.2010.08.016 |
[5] |
Gautam K, Sharma P, Dwivedi S, Singh A, Gaur VK, et al. 2023. A review on control and abatement of soil pollution by heavy metals: emphasis on artificial intelligence in recovery of contaminated soil. Environmental Research 225:115592 doi: 10.1016/j.envres.2023.115592 |
[6] |
Rahman Z, Singh VP. 2019. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental Monitoring and Assessment 191:419 doi: 10.1007/s10661-019-7528-7 |
[7] |
Jiwan S, Kalamdhad AS. 2011. Effects of heavy metals on soil, plants, human health and aquatic life. International Journal of Research in Chemistry and Environment 1:15−21 |
[8] |
Hassan NS, Jalil AA, Bahari MB, Khusnun NF, Sharaf Aldeen EM, et al. 2023. A comprehensive review on zeolite-based mixed matrix membranes for CO2/CH4 separation. Chemosphere 314:137709 doi: 10.1016/j.chemosphere.2022.137709 |
[9] |
Li P, Qian H, Howard KWF, Wu J, Lyu X. 2014. Anthropogenic pollution and variability of manganese in alluvial sediments of the Yellow River, Ningxia, Northwest China. Environmental Monitoring and Assessment 186:1385−98 doi: 10.1007/s10661-013-3461-3 |
[10] |
Ghosh K, Indra N. 2018. Cadmium treatment induces echinocytosis, DNA damage, inflammation, and apoptosis in cardiac tissue of albino Wistar rats. Environmental Toxicology and Pharmacology 59:43−52 doi: 10.1016/j.etap.2018.02.009 |
[11] |
Jha B, Singh DN. 2016. Basics of Zeolites. In Fly Ash Zeolites: innovations, applications, and directions, Singapore: Springer Nature. pp. 5−13. https://doi.org/10.1007/978-981-10-1404-8_2 |
[12] |
Virta RL. 2008. Mineral resource of the month: natural and synthetic zeolites. Geotimes 53:20 |
[13] |
Elliot AD, Zhang D. 2005. Controlled Release Zeolite Fertilisers: A Value Added Product Produced from Fly Ash. World of Coal Ash (WOCA) Conference, Kentucky, USA, 2005. Kentucky, USA: Centre for Applied Energy Research. |
[14] |
Groen JC, Peffer LAA, Moulijn JA, Pérez-Ramı́rez J. 2004. On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium. Microporous and Mesoporous Materials 69:29−34 doi: 10.1016/j.micromeso.2004.01.002 |
[15] |
Colella C. 1999. Environmental applications of natural zeolitic materials based on their ion exchange properties. In Natural Microporous Materials in Environmental Technology, eds. Misaelides P, Macášek F, Pinnavaia TJ, Colella C. Dordrecht: Springer. pp. 207−24. https://doi.org/10.1007/978-94-011-4499-5_14 |
[16] |
Johnson SA, Brigham ES, Ollivier PJ, Mallouk TE. 1997. Effect of micropore topology on the structure and properties of zeolite polymer replicas. Chemistry of Materials 9:2448−58 doi: 10.1021/cm9703278 |
[17] |
Enamorado-Horrutiner Y, Villanueva-Tagle ME, Behar M, Rodríguez-Fuentes G, Ferraz Dias J, et al. 2016. Cuban zeolite for lead sorption: application for water decontamination and metal quantification in water using nondestructive techniques. International Journal of Environmental Science and Technology 13:1245−56 doi: 10.1007/s13762-016-0956-9 |
[18] |
Ebrazi B, Banihabib ME. 2015. Simulation of Ca2+ and Mg2+ removal process in fixed-bed column of natural zeolite. Desalination and Water Treatment 55:1116−24 doi: 10.1080/19443994.2014.926833 |
[19] |
Chmielewská E. 2014. Zeolitic adsorption in course of pollutants mitigation and environmental control. Journal of Radioanalytical and Nuclear Chemistry 299:255−60 doi: 10.1007/s10967-013-2721-6 |
[20] |
Talebnezhad R, Sepaskhah AR. 2013. Effects of bentonite on water infiltration in a loamy sand soil. Archives of Agronomy and Soil Science 59:1409−18 doi: 10.1080/03650340.2012.708926 |
[21] |
Inglezakis VJ, Elaiopoulos K, Aggelatou V, Zorpas AA. 2012. Treatment of underground water in open flow and closed-loop fixed bed systems by utilizing the natural minerals clinoptilolite and vermiculite. Desalination and Water Treatment 39:215−27 doi: 10.5004/dwt.2012.3357 |
[22] |
Thirumavalavan M, Wang YT, Lin LC, Lee JF. 2011. Monitoring of the structure of mesoporous silica materials tailored using different organic templates and their effect on the adsorption of heavy metal ions. The Journal of Physical Chemistry C 115:8165−74 doi: 10.1021/jp200029g |
[23] |
Tsai WT, Hsien KJ, Hsu HC. 2009. Adsorption of organic compounds from aqueous solution onto the synthesized zeolite. Journal of Hazardous Materials 166:635−41 doi: 10.1016/j.jhazmat.2008.11.071 |
[24] |
Medvidović NV, Perić J, Trgo M. 2006. Column performance in lead removal from aqueous solutions by fixed bed of natural zeolite–clinoptilolite. Separation and Purification Technology 49:237−44 doi: 10.1016/j.seppur.2005.10.005 |
[25] |
Ören AH, Kaya A. 2006. Factors affecting adsorption characteristics of Zn2+ on two natural zeolites. Journal of Hazardous Materials 131:59−65 doi: 10.1016/j.jhazmat.2005.09.027 |
[26] |
Misaelides P. 2011. Application of natural zeolites in environmental remediation: a short review. Microporous and Mesoporous Materials 144(1−3):15−18 doi: 10.1016/j.micromeso.2011.03.024 |
[27] |
Tarasevich YI, Polyakov VE. 1995. Demanganation of artesian waters using modified clinoptilolite. Natural Zeolites, Sofia 95:65−67 |
[28] |
Tarasevich YI. 1999. Preparation of a modified adsorbent based on clinoptilolite and its application for the removal of iron and manganese ions from artesian water. In Natural Microporous Materials in Environmental Technology, eds. Misaelides P, Macášek F, Pinnavaia TJ, Colella C. Dordrecht: Springer. pp. 381−86. https://doi.org/10.1007/978-94-011-4499-5_28 |
[29] |
Popovici E, Vatajani A, Anastasiu A. 1997. Ability of organo-clinoptilolite to remove single ring aromatics from contaminated waters. Natural Zeolites, Sofia 95:61−64 |
[30] |
Murdachanova GM, Abduragimova LA, and Mamedov IA. 1985. The obtaining hydrofobic zeolites and study of their adsorption properties for phenol. Proceedings 4th Soviet-Bulgarian Symposium Natural Zeolites, Burgas Bulgaria. pp. 195–200 |
[31] |
Cadena F, Cazares E. 1995. Sorption of benzene, toluene, and o-xylene from aqueous solution on surface of zeolitic tuffs modified with organic cations. Natural Zeolites 93:309−24 |
[32] |
Haggerty GM, Bowman RS. 1994. Sorption of chromate and other inorganic anions by organo-zeolite. Environmental Science & Technology 28:452−58 doi: 10.1021/es00052a017 |
[33] |
Bowman RS, Haggerty GM, Huddleston RG, Neel D, Flynn MM. 1995. Sorption of nonpolar organic compounds, inorganic cations, and inorganic oxyanions by surfactant-modified zeolites. In Surfactant-Enhanced Subsurface Remediation. ACS Symposium Series, eds. Sabatini DA, Knox RC, Harwell JH. Washington, DC: American Chemical Society. pp. 54−64. https://doi.org/10.1021/bk-1995-0594.ch005 |
[34] |
Nikashina VA, Myasoedov BF. Environmental applications of modified natural zeolites. In Natural Microporous Materials in Environmental Technology. NATO Science Series, eds. Misaelides P, Macášek F, Pinnavaia TJ, Colella C. vol 362. Dordrecht: Springer. pp. 335−43. https://doi.org/10.1007/978-94-011-4499-5_23 |
[35] |
Doula MK. 2009. Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form. Water Research 43:3659−72 doi: 10.1016/j.watres.2009.05.037 |
[36] |
Guaya D, Valderrama C, Farran A, Armijos C, Cortina JL. 2015. Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite. Chemical Engineering Journal 271:204−13 doi: 10.1016/j.cej.2015.03.003 |
[37] |
Mahmoodi NM, Saffar-Dastgerdi MH. 2019. Zeolite nanoparticle as a superior adsorbent with high capacity: synthesis, surface modification and pollutant adsorption ability from wastewater. Microchemical Journal 145:74−83 doi: 10.1016/j.microc.2018.10.018 |
[38] |
Kats EM, Nikashina VA. 1996. Sorption properties of natural clinoptilolite modified by Fe-containing solutions. Russian Chemical Bulletin 45:303−5 doi: 10.1007/BF01433960 |
[39] |
Wang Y, Jia H, Chen P, Fang X, Du T. 2020. Synthesis of La and Ce modified X zeolite from rice husk ash for carbon dioxide capture. Journal of Materials Research and Technology 9:4368−78 doi: 10.1016/j.jmrt.2020.02.061 |
[40] |
Zagho MM, Hassan MK, Khraisheh M, Al Ali Al-Maadeed M, Nazarenko S. 2021. A review on recent advances in CO2 separation using zeolite and zeolite-like materials as adsorbents and fillers in mixed matrix membranes (MMMs). Chemical Engineering Journal Advances 6:100091 doi: 10.1016/j.ceja.2021.100091 |
[41] |
Ma Y, Cheng L, Zhang D, Zhang F, Zhou S, et al. 2022. Stabilization of Pb, Cd, and Zn in soil by modified-zeolite: mechanisms and evaluation of effectiveness. Science of the Total Environment 814:152746 doi: 10.1016/j.scitotenv.2021.152746 |
[42] |
Reeve PJ, Fallowfield HJ. 2017. The toxicity of cationic surfactant HDTMA-Br, desorbed from surfactant modified zeolite, towards faecal indicator and environmental microorganisms. Journal of Hazardous Materials 339:208−15 doi: 10.1016/j.jhazmat.2017.06.022 |
[43] |
Ioannou Z, Papapostolou T, Georgoulas N, Dimirkou A. 2012. Use of modified zeolites for the remediation of waters and cultivated soils from Cu(II). Water, Air, & Soil Pollution 223:5841−54 doi: 10.1007/s11270-012-1320-4 |
[44] |
Gao M, Yang L, Yang S, Jiang T, Wu F, et al. 2022. Simple aminated modified zeolite 4A synthesized using fly ash and its remediation of mercury contamination: characteristics and mechanism. Sustainability 14:15924 doi: 10.3390/su142315924 |
[45] |
Li Z, Wang L, Meng J, Liu X, Xu J, et al. 2018. Zeolite-supported nanoscale zero-valent iron: new findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil. Journal of Hazardous Materials 344:1−11 doi: 10.1016/j.jhazmat.2017.09.036 |
[46] |
Yang D, Wang R, Feng X, Chu Z, Li J, et al. 2022. Transferring waste red mud into ferric oxide decorated ANA-type zeolite for multiple heavy metals polluted soil remediation. Journal of Hazardous Materials 424:127244 doi: 10.1016/j.jhazmat.2021.127244 |
[47] |
Ghrair AM, Ingwersen J, Streck T. 2010. Immobilization of heavy metals in soils amended by nanoparticulate zeolitic tuff: Sorption-desorption of cadmium. Journal of Plant Nutrition and Soil Science 173:852−60 doi: 10.1002/jpln.200900053 |
[48] |
Abdel-Salam M. 2018. Remediation of a Pb-contaminated soil cultivated with rose Geranium (Pelargonium graveolens) using nano-zeolite. Journal of Soil Sciences and Agricultural Engineering 9:473−79 doi: 10.21608/jssae.2018.36440 |
[49] |
Pulimi M, Subramanian S. 2016. Nanomaterials for soil fertilisation and contaminant removal. In Nanoscience in Food and Agriculture 1. Sustainable Agriculture Reviews, eds. Ranjan S, Dasgupta N, Lichtfouse E. vol 20. Cham: Springer International Publishing. pp. 229−46 https://doi.org/10.1007/978-3-319-39303-2_8 |
[50] |
Vuong GT Do TO. 2015. Nanozeolites and nanoporous zeolitic composites: Synthesis and applications. In Mesoporous Zeolites: Preparation, Characterization and Applications, eds. García-Martínez J, Li K. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. pp. 79–114. https://doi.org/10.1002/9783527673957.ch3 |
[51] |
Dang VM, Van HT, Vinh ND, Hoa Duong TM, Hanh Nguyen TB, et al. 2021. Enhancement of exchangeable Cd and Pb immobilization in contaminated soil using Mg/Al LDH-zeolite as an effective adsorbent. RSC Advances 11:17007−19 doi: 10.1039/d0ra10530a |
[52] |
Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, et al. 2020. Nanotechnology in agriculture: current status, challenges and future opportunities. Science of the Total Environment 721:137778 doi: 10.1016/j.scitotenv.2020.137778 |
[53] |
Chao HP, Chen SH. 2012. Adsorption characteristics of both cationic and oxyanionic metal ions on hexadecyltrimethylammonium bromide-modified NaY zeolite. Chemical Engineering Journal 193−194:283−89 doi: 10.1016/j.cej.2012.04.059 |
[54] |
Kragović M, Daković A, Marković M, Krstić J, Gatta GD, et al. 2013. Characterization of lead sorption by the natural and Fe(III)-modified zeolite. Applied Surface Science 283:764−74 doi: 10.1016/j.apsusc.2013.07.016 |
[55] |
Ge Q, Tian Q, Hou R, Wang S. 2022. Combing phosphorus-modified hydrochar and zeolite prepared from coal gangue for highly effective immobilization of heavy metals in coal-mining contaminated soil. Chemosphere 291:132835 doi: 10.1016/j.chemosphere.2021.132835 |
[56] |
Hong M, Yu L, Wang Y, Zhang J, Chen Z, et al. 2019. Heavy metal adsorption with zeolites: the role of hierarchical pore architecture. Chemical Engineering Journal 359:363−72 doi: 10.1016/j.cej.2018.11.087 |
[57] |
Shi WY, Shao HB, Li H, Shao MA, Du S. 2009. Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. Journal of Hazardous Materials 170:1−6 doi: 10.1016/j.jhazmat.2009.04.097 |
[58] |
Thomas JM, Vaughan DEW. 1989. Methodologies to establish the structure and composition of new zeolitic molecular sieves. Journal of Physics and Chemistry of Solids 50:449−67 doi: 10.1016/0022-3697(89)90425-3 |
[59] |
Apiratikul R, Pavasant P. 2008. Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash. Chemical Engineering Journal 144:245−58 doi: 10.1016/j.cej.2008.01.038 |
[60] |
Ibrahim AH, Lyu X, ElDeeb AB. 2023. Synthesized zeolite based on Egyptian boiler ash residue and Kaolin for the effective removal of heavy metal ions from industrial wastewater. Nanomaterials 13:1091 doi: 10.3390/nano13061091 |
[61] |
Fan X, Liu H, Anang E, Ren D. 2021. Effects of electronegativity and hydration energy on the selective adsorption of heavy metal ions by synthetic NaX zeolite. Materials 14:4066 doi: 10.3390/ma14154066 |
[62] |
Munthali MW, Elsheikh MA, Johan E, Matsue N. 2014. Proton adsorption selectivity of zeolites in aqueous media: effect of Si/Al ratio of zeolites. Molecules 19:20468−81 doi: 10.3390/molecules191220468 |
[63] |
Peter A, Mihaly-Cozmuta L, Mihaly-Cozmuta A, Nicula C, Indrea E, et al. 2012. Calcium- and ammonium ion-modification of zeolite amendments affects the metal-uptake of Hieracium piloselloides in a dose-dependent way. Journal of Environmental Monitoring 14:2807−14 doi: 10.1039/c2em30301a |
[64] |
Mijailović NR, Nedić Vasiljević B, Ranković M, Milanović V, Uskoković-Marković S. 2022. Environmental and pharmacokinetic aspects of zeolite/pharmaceuticals systems—two facets of adsorption ability. Catalysts 12:837 doi: 10.3390/catal12080837 |
[65] |
Palmer M, Hatley H. 2018. The role of surfactants in wastewater treatment: impact, removal and future techniques: a critical review. Water Research 147:60−72 doi: 10.1016/j.watres.2018.09.039 |
[66] |
Khan A, Qyyum MA, Saulat H, Ahmad R, Peng X, et al. 2021. Metal–organic frameworks for biogas upgrading: recent advancements, challenges, and future recommendations. Applied Materials Today 22:100925 doi: 10.1016/j.apmt.2020.100925 |