[1] |
Choe U, Yu LL, Wang TTY. 2018. The science behind microgreens as an exciting new food for the 21st century. Journal of Agricultural and Food Chemistry 66:11519−30 doi: 10.1021/acs.jafc.8b03096 |
[2] |
Kyriacou MC, De Pascale S, Kyratzis A, Rouphael Y. 2017. Microgreens as a component of space life support systems: a cornucopia of functional food. Frontiers in Plant Science 8:1587 doi: 10.3389/fpls.2017.01587 |
[3] |
Johnson CM, Boles HO, Spencer LE, Poulet L, Romeyn M, et al. 2021. Supplemental food production with plants: a review of NASA research. Frontiers in Astronomy and Space Sciences 8:734343 doi: 10.3389/fspas.2021.734343 |
[4] |
Khodadad CLM, Hummerick ME, Spencer LE, Dixit AR, Richards JT, et al. 2020. Microbiological and nutritional analysis of lettuce crops grown on the international space station. Frontiers in Plant Science 11:199 doi: 10.3389/fpls.2020.00199 |
[5] |
Ebert AW. 2022. Sprouts and microgreens—novel food sources for healthy diets. Plants 11:571 doi: 10.3390/plants11040571 |
[6] |
Teng Z, Luo YG, Pearlstein DJ, Wheeler RM, Johnson CM, et al. 2023. Microgreens for home, commercial, and space farming: a comprehensive update of the most recent developments. Annual Review of Food Science and Technology 14:539−62 doi: 10.1146/annurev-food-060721-024636 |
[7] |
Weber CF. 2017. Broccoli microgreens: a mineral-rich crop that can diversify food systems. Frontiers in Nutrition 4:7 doi: 10.3389/fnut.2017.00007 |
[8] |
Xiao Z, Codling EE, Luo Y, Nou X, Lester GE, et al. 2016. Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. Journal of Food Composition and Analysis 49:87−93 doi: 10.1016/j.jfca.2016.04.006 |
[9] |
El-Nakhel C, Pannico A, Graziani G, Giordano M, Kyriacou MC, et al. 2021. Mineral and antioxidant attributes of Petroselinum crispum at different stages of ontogeny: microgreens vs. baby greens. Agronomy 11:857 doi: 10.3390/agronomy11050857 |
[10] |
Sun J, Xiao Z, Lin L, Lester GE, Wang Q, et al. 2013. Profiling polyphenols in five Brassica species microgreens by UHPLC-PDA-ESI/HRMSn. Journal of Agricultural and Food Chemistry 61:10960−70 doi: 10.1021/jf401802n |
[11] |
Lenzi A, Orlandini A, Bulgari R, Ferrante A, Bruschi P. 2019. Antioxidant and mineral composition of three wild leafy species: a comparison between microgreens and baby greens. Foods 8:487 doi: 10.3390/foods8100487 |
[12] |
Di Bella MC, Niklas A, Toscano S, Picchi V, Romano D, et al. 2020. Morphometric characteristics, polyphenols and ascorbic acid variation in Brassica oleracea L. novel foods: sprouts, microgreens and baby leaves. Agronomy 10:782 doi: 10.3390/agronomy10060782 |
[13] |
Marchioni I, Martinelli M, Ascrizzi R, Gabbrielli C, Flamini G, et al. 2021. Small functional foods: comparative phytochemical and nutritional analyses of five microgreens of the Brassicaceae family. Foods 10:427 doi: 10.3390/foods10020427 |
[14] |
Xiao Z, Rausch SR, Luo Y, Sun J, Yu L, et al. 2019. Microgreens of Brassicaceae: genetic diversity of phytochemical concentrations and antioxidant capacity. LWT 101:731−37 doi: 10.1016/j.lwt.2018.10.076 |
[15] |
Mlinarić S, Piškor A, Melnjak A, Mikuška A, Šrajer Gajdošik M, et al. 2023. Antioxidant capacity and shelf life of radish microgreens affected by growth light and cultivars. Horticulturae 9:76 doi: 10.3390/horticulturae9010076 |
[16] |
Yang B, Quiros CF. 2010. Survey of glucosinolate variation in leaves of Brassica rapa crops. Genetic Resources and Crop Evolution 57:1079−89 doi: 10.1007/s10722-010-9549-5 |
[17] |
Kyriacou MC, El-Nakhel C, Pannico A, Graziani G, Zarrelli A, et al. 2021. Ontogenetic variation in the mineral, phytochemical and yield attributes of brassicaceous microgreens. Foods 10:1032 doi: 10.3390/foods10051032 |
[18] |
Agati G, Tattini M. 2010. Multiple functional roles of flavonoids in photoprotection. New Phytologist 186:786−93 doi: 10.1111/j.1469-8137.2010.03269.x |
[19] |
Almushayti AY, Brandt K, Carroll MA, Scotter MJ. 2021. Current analytical methods for determination of glucosinolates in vegetables and human tissues. Journal of Chromatography A 1643:462060 doi: 10.1016/j.chroma.2021.462060 |
[20] |
Axelsson AS, Tubbs E, Mecham B, Chacko S, Nenonen HA, et al. 2017. Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Science Translational Medicine 9:eaah4477 doi: 10.1126/scitranslmed.aah4477 |
[21] |
Bhaswant M, Shanmugam DK, Miyazawa T, Abe C, Miyazawa T. 2023. Microgreens—a comprehensive review of bioactive molecules and health benefits. Molecules 28:867 doi: 10.3390/molecules28020867 |
[22] |
Truzzi F, Whittaker A, Roncuzzi C, Saltari A, Levesque MP, et al. 2021. Microgreens: functional food with antiproliferative cancer properties influenced by light. Foods 10:1690 doi: 10.3390/foods10081690 |
[23] |
Tomas M, Zhang L, Zengin G, Rocchetti G, Capanoglu E, et al. 2021. Metabolomic insight into the profile, in vitro bioaccessibility and bioactive properties of polyphenols and glucosinolates from four Brassicaceae microgreens. Food Research International 140:110039 doi: 10.1016/j.foodres.2020.110039 |
[24] |
El-Nakhel C, Pannico A, Graziani G, Kyriacou MC, Giordano M, et al. 2020. Variation in macronutrient content, phytochemical constitution and in vitro antioxidant capacity of green and red butterhead lettuce dictated by different developmental stages of harvest maturity. Antioxidants 9:300 doi: 10.3390/antiox9040300 |
[25] |
Pinto E, Almeida AA, Aguiar AA, Ferreira IMPLVO. 2015. Comparison between the mineral profile and nitrate content of microgreens and mature lettuces. Journal of Food Composition and Analysis 37:38−43 doi: 10.1016/j.jfca.2014.06.018 |
[26] |
Klopsch R, Baldermann S, Hanschen FS, Voss A, Rohn S, et al. 2019. Brassica-enriched wheat bread: unraveling the impact of ontogeny and breadmaking on bioactive secondary plant metabolites of pak choi and kale. Food Chemistry 295:412−22 doi: 10.1016/j.foodchem.2019.05.113 |
[27] |
Waterland NL, Moon Y, Tou JC, Kim MJ, Pena-Yewtukhiw EM, et al. 2017. Mineral content differs among microgreen, baby leaf, and adult stages in three cultivars of kale. HortScience 52:566−71 doi: 10.21273/HORTSCI11499-16 |
[28] |
de la Fuente B, López-García G, Máñez V, Alegría A, Barberá R, et al. 2019. Evaluation of the bioaccessibility of antioxidant bioactive compounds and minerals of four genotypes of Brassicaceae microgreens. Foods 8:250 doi: 10.3390/foods8070250 |
[29] |
Renna M. 2016. Microgreens. Novel fresh and functional food to explore all the value of biodiversity, F. Di Gioia, P. Santamaria (Eds.), ECO-logica, Bari, Italy, 2015. ISBN: 978-88-909289-3-2 (Price: free, website: www.gustailbiodiverso.com/en/microgreens-ebook). South African Journal of Botany 106: 250 |
[30] |
Kyriacou MC, El-Nakhel C, Graziani G, Pannico A, Soteriou GA, et al. 2019. Functional quality in novel food sources: genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chemistry 277:107−18 doi: 10.1016/j.foodchem.2018.10.098 |
[31] |
Kyriacou MC, El-Nakhel C, Pannico A, Graziani G, Soteriou GA, et al. 2020. Phenolic constitution, phytochemical and macronutrient content in three species of microgreens as modulated by natural fiber and synthetic substrates. Antioxidants 9:252 doi: 10.3390/antiox9030252 |
[32] |
Xiao Z, Luo Y, Lester GE, Kou L, Yang T, et al. 2014. Postharvest quality and shelf life of radish microgreens as impacted by storage temperature, packaging film, and chlorine wash treatment. LWT - Food Science and Technology 55:551−58 doi: 10.1016/j.lwt.2013.09.009 |
[33] |
Kyriacou MC, Rouphael Y. 2018. Towards a new definition of quality for fresh fruits and vegetables. Scientia Horticulturae 234:463−69 doi: 10.1016/j.scienta.2017.09.046 |
[34] |
Rennie TJ, Vigneault C, Raghavan VGS, DeEll JR. 2001. Effects of pressure reduction rate on vacuum cooled lettuce quality during storage. Canadian Biosystems Engineering 43:39−43 |
[35] |
Lichtenthaler HK, Buschmann C. 2001. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry 1:F4.3.1−F4.3.8 doi: 10.1002/0471142913.faf0403s01 |
[36] |
Mawlong I, Kumar MSS, Gurung B, Singh KH, Singh D. 2017. A simple spectrophotometric method for estimating total glucosinolates in mustard de-oiled cake. International Journal of Food Properties 20:3274−81 doi: 10.1080/10942912.2017.1286353 |
[37] |
Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture 16:144−58 doi: 10.5344/ajev.1965.16.3.144 |
[38] |
Giusti MM, Wrolstad RE. 2001. Characterization and measurement of anthocyanins by UV-visible spectroscopy. Current Protocols in Food Analytical Chemistry 00:F1.2.1−F1.2.13 doi: 10.1002/0471142913.faf0102s00 |
[39] |
Benzie IFF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Analytical Biochemistry 239:70−76 doi: 10.1006/abio.1996.0292 |
[40] |
Hanley ME, Fenner M, Whibley H, Darvill B. 2004. Early plant growth: identifying the end point of the seedling phase. New Phytologist 163:61−66 doi: 10.1111/j.1469-8137.2004.01094.x |
[41] |
Buttery BR, Buzzell RI. 1977. The relationship between chlorophyll content and rate of photosynthesis in soybeans. Canadian Journal of Plant Science 57:1−5 doi: 10.4141/cjps77-001 |
[42] |
Heinze M, Hanschen FS, Wiesner-Reinhold M, Baldermann S, Gräfe J, et al. 2018. Effects of developmental stages and reduced UVB and low UV conditions on plant secondary metabolite profiles in pak choi (Brassica rapa subsp. chinensis). Journal of Agricultural and Food Chemistry 66:1678−92 doi: 10.1021/acs.jafc.7b03996 |
[43] |
Pecket RC, Small CJ. 2018. Significance of Genetic, environmental, and pre- and postharvest factors affecting carotenoid contents in crops: a review. Journal of Agricultural and Food Chemistry 66:5310−24 doi: 10.1021/acs.jafc.8b01613 |
[44] |
Pecket RC, Small CJ. 1980. Occurrence, location and development of anthocyanoplasts. Phytochemistry 19:2571−76 doi: 10.1016/S0031-9422(00)83921-7 |
[45] |
Nicolle C, Carnat A, Fraisse D, Lamaison JL, Rock E, et al. 2004. Characterisation and variation of antioxidant micronutrients in lettuce (Lactuca sativa folium). Journal of the Science of Food and Agriculture 84:2061−69 doi: 10.1002/jsfa.1916 |
[46] |
Brazaitytė A, Jankauskienė J, Novičkovas A. 2013. The effects of supplementary short-term red LEDs lighting on nutritional quality of Perilla frutescens L. microgreens. Rural Development 6:54−58 |