[1] |
Marshall VM, Lewis MM, Ostendorf B. 2012. Buffel grass (Cenchrus ciliaris) as an invader and threat to biodiversity in arid environments: a review. Journal of Arid Environment 78:1−12 doi: 10.1016/J.JARIDENV.2011.11.005 |
[2] |
Bowen MK, Chudleigh F. 2018. Grazing pressure, land condition, productivity and profitability of beef cattle grazing buffel grass pastures in the subtropics of Australia: a modelling approach. Animal Production Science 58:1451−58 doi: 10.1071/AN17780 |
[3] |
Thornton CM, Elledge AE. 2021. Heavy grazing of buffel grass pasture in the Brigalow Belt bioregion of Queensland, Australia, more than tripled runoff and exports of total suspended solids compared to conservative grazing. Marine Pollution Bulletin 171:112704 doi: 10.1016/J.MARPOLBUL.2021.112704 |
[4] |
Grice AC, Friedel MH, Marshall NA, Van Klinken RD. 2012. Tackling contentious invasive plant species: A case study of buffel grass in Australia. Environmental Management 49:285−94 doi: 10.1007/S00267-011-9781-6 |
[5] |
De Mendonça Lopes AS, De Oliveira JS, De Lima Cruz GF, De Sousa Vieira D, De Sousa Santos FN, et al. 2023. Effects of non-protein nitrogen on buffel grass fiber and ruminal bacterial composition in sheep. Livestock Science 272:105237 doi: 10.1016/J.LIVSCI.2023.105237 |
[6] |
Da Silva Macêdo AJ, Santos EM, De Araújo GGL, Edvan RL, De Oliveira JS, et al. 2018. Silages in the form of diet based on spineless cactus and buffelgrass. African Journal of Range & Forage Science 35:121−29 doi: 10.2989/10220119.2018.1473494 |
[7] |
Santana Neto JA, Oliveira JS, Oliveira CJB, Santos EM, Costa ECB, et al. 2019. Ammonia levels on in vitro degradation of fibrous carbohydrates from buffel grass. South African Journal of Animal Science 49:585−97 doi: 10.4314/sajas.v49i3.19 |
[8] |
Pinho RMA, Santos EM, De Carvalho GGP, Da Silva APG, Da Silva TC, et al. 2013. Microbial and fermentation profiles, losses and chemical composition of silages of buffel grass harvested at different cutting heights. Revista Brasileira de Zootecnia 42:850−56 doi: 10.1590/S1516-35982013001200003 |
[9] |
Jung HG, Allen MS. 1995. Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. Journal of Animal Science 73:2774−90 doi: 10.2527/1995.7392774X |
[10] |
Harper KJ, McNeill DM. 2015. The role iNDF in the regulation of feed intake and the importance of its assessment in subtropical ruminant systems (the role of iNDF in the regulation of forage intake). Agriculture 5:778−79 doi: 10.3390/agriculture5030778 |
[11] |
Benvenutti MA, Gordon IJ, Poppi DP. 2006. The effect of the density and physical properties of grass stems on the foraging behaviour and instantaneous intake rate by cattle grazing an artificial reproductive tropical sward. Grass and Forage Science 61:272−81 doi: 10.1111/J.1365-2494.2006.00531.X |
[12] |
Pavetti DR, Benvenutti MA, Radke Ó, Cibils YÓA. 2018. Long-term assessment of a new rotational-grazing management strategy called PUP-grazing (proportion of un-grazed pasture). Tropical Grasslands - Forrajes Tropicales 6:53−57 |
[13] |
Poczynek M, Neumann M, Horst EH, Venancio BJ, Figueira DN, et al. 2016. Mass and nutritional quality of upper and lower strata of tropical forages. Semina: Ciências Agrárias, Londrin 37:2725−36 doi: 10.5433/1679-0359.2016V37N4SUPL1P2725 |
[14] |
Wolfrum E, Payne C, Stefaniak T, Rooney W, Dighe N, et al. 2013. Multivariate Calibration Models for Sorghum Composition using Near-Infrared (NIR) Spectroscopy. Technical Report. Rep. NREL/TP-5100-56838. National Renewable Energy Laboratory, USA. www.nrel.gov/docs/fy13osti/56838.pdf |
[15] |
Brown C, Martin AP, Grof CPL. 2017. The application of Fourier transform mid-infrared (FTIR) spectroscopy to identify variation in cell wall composition of Setaria italica ecotypes. Journal of Integrative Agriculture 16:1256−67 doi: 10.1016/S2095-3119(16)61574-5 |
[16] |
Brown CW, Jie MWQ, Pearce W, Arief V, Dayananda B, et al. 2023. The application of Fourier Transform Infra-Red spectrometry to assess the impact of changes in photosynthetic photon flux on cell wall components and turf quality of different cultivars of Cynodon grasses. Grass Research 3:9 doi: 10.48130/GR-2023-0009 |
[17] |
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, et al. 2008 Determination of structural carbohydrates and lignin in biomass. Technical Report. Rep. NREL/TP-510-42618. National Renewable Energy Laboratory, USA. www.nrel.gov/docs/gen/fy13/42618.pdf |
[18] |
Goering HK, Van Soest PJ. 1970. Forage fiber analyses: apparatus, reagents, procedures, and some applications. Agricultural Research Service, U.S. Department of Agriculture, Washington DC. iv, 20 pp. https://handle.nal.usda.gov/10113/CAT87209099 |
[19] |
Mertens DR, Allen M, Carmany J, Clegg J, Davidowicz A, et al. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International 85:1217−40 doi: 10.1093/jaoac/85.6.1217 |
[20] |
Zhou G, Taylor G, Polle A. 2011. FTIR-ATR-based prediction and modelling of lignin and energy contents reveals independent intra-specific variation of these traits in bioenergy poplars. Plant Methods 7:9 doi: 10.1186/1746-4811-7-9 |
[21] |
Pancaldi F, Schranz ME, Van Loo EN, Trindale LM. 2024. Highly differentiated genomic properties underpin the different cell walls of Poaceae and eudicots. Plant Physiology 194:274−95 doi: 10.1093/plphys/kiad267 |
[22] |
Cardoso AS, Silveira ML, Vendramini JMB, Moriel P, Kohmann MM, et al. 2023. Fire management effects on ruminal digestibility and in vitro methane emissions of subtropical rangeland plant species. Translational Animal Science 7:txad080 doi: 10.1093/tas/txad080 |
[23] |
Afzal RA, Pennells J, Yamauchi Y, Annamalai PK, Nanjundan AK, et al. 2022. Lignocellulosic plant cell wall variation influences the structure and properties of hard carbon derived from sorghum biomass. Carbon Trends 7:100168 doi: 10.1016/J.CARTRE.2022.100168 |
[24] |
Hansen MAT, Hidayat BJ, Mogensen KK, Jeppesen MD, Jørgensen B, et al. 2013. Enzyme affinity to cell types in wheat straw (Triticum aestivum L.) before and after hydrothermal pretreatment. Biotechnology for Biofuels 6:54 doi: 10.1186/1754-6834-6-54 |
[25] |
Hansen MAT, Ahl LI, Pedersen HL, Westereng B, Willats WGT, et al. 2014. Extractability and digestibility of plant cell wall polysaccharides during hydrothermal and enzymatic degradation of wheat straw (Triticum aestivum L.). Industrial Crops and Products 55:63−69 doi: 10.1016/J.INDCROP.2014.02.002 |
[26] |
Benvenutti MA, Findsen C, Savian JV, Mayer DG, Barber DG. 2020. The effect of stage of regrowth on the physical composition and nutritive value of the various vertical strata of kikuyu (Cenchrus clandestinus) pastures. Tropical Grasslands-Forrajes Tropicales 8:141−46 |
[27] |
Duru M, Cruz P, Magda D. 2004. Using plant traits to compare sward structure and composition of grass species across environmental gradients. Applied Vegetation Science 7:11−18 doi: 10.1111/j.1654-109X.2004.tb00590.x |
[28] |
Jung HJG. 1997. Analysis of forage fiber and cell walls in ruminant nutrition. The Journal of Nutrition 127:810S−813S doi: 10.1093/jn/127.5.810S |
[29] |
Gomes DI, Detmann E, Valadares Filho SDC, Fukushima RS, De Souza MA, et al. 2011. Evaluation of lignin contents in tropical forages using different analytical methods and their correlations with degradation of insoluble fiber. Animal Feed Science and Technology 168:206−22 doi: 10.1016/j.anifeedsci.2011.05.001 |
[30] |
Li F, Ren S, Zhang W, Xu Z, Xie G, et al. 2013. Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus. Bioresource Technology 130:629−37 doi: 10.1016/J.BIORTECH.2012.12.107 |
[31] |
Rønn M, Bach Knudsen KE, Kristensen NB, Weisbjerg MR. 2022. Can lignin and monomer composition of fiber describe the variation in iNDF in forages? Animal Feed Science and Technology 284:115157 doi: 10.1016/J.ANIFEEDSCI.2021.115157 |
[32] |
Tesk CRM, Pedreira BC, Pereira DH, Pina DS, Ramos TA, et al. 2018. Impact of grazing management on forage qualitative characteristics: a review. Scientific Electronic Archives 11:188−97 doi: 10.36560/1152018667 |
[33] |
Krämer M, Weisbjerg MR, Lund P, Jensen CS, Pedersen MG. 2012. Estimation of indigestible NDF in forages and concentrates from cell wall composition. Animal Feed Science and Technology 177:40−51 doi: 10.1016/J.ANIFEEDSCI.2012.07.027 |
[34] |
Smith WB, Galyean ML, Kallenbach RL, Greenwood PL, Scholljegerdes EJ. 2021. Understanding intake on pastures: how, why, and a way forward. Journal of Animal Science 99:skab062 doi: 10.1093/JAS/SKAB062 |
[35] |
Oliveira RA, Näsi R, Niemeläinen O, Nyholm L, Alhonoja K, et al. 2020. Machine learning estimators for the quantity and quality of grass swards used for silage production using drone-based imaging spectrometry and photogrammetry. Remote Sensing of Environment 246:111830 doi: 10.1016/j.rse.2020.111830 |
[36] |
Bell MJ, Mereu L, Davis J. 2018. The use of mobile near-infrared spectroscopy for real-time pasture management. Frontiers in Sustainable Food Systems 2:76 doi: 10.3389/fsufs.2018.00076 |