[1] |
Musacchi S, Serra S. 2018. Apple fruit quality: overview on pre-harvest factors. Scientia Horticulturae 234:409−30 doi: 10.1016/j.scienta.2017.12.057 |
[2] |
Serra S, Leisso R, Giordani L, Kalcsits L, Musacchi S. 2016. Crop load influences fruit quality, nutritional balance, and return bloom in 'Honeycrisp' apple. HortScience 51:236−44 doi: 10.21273/HORTSCI.51.3.236 |
[3] |
Webster AD. 1995. Rootstock and interstock effects on deciduous fruit tree vigour, precocity, and yield productivity. New Zealand Journal of Crop and Horticultural Science 23:373−82 doi: 10.1080/01140671.1995.9513913 |
[4] |
Autio WR. 1991. Rootstock affect ripening and other qualities of 'delicious' apples. Journal of the American Society for Horticultural Science 116:378−82 doi: 10.21273/JASHS.116.3.378 |
[5] |
Lordan J, Alins G, Àvila G, Torres E, Carbó J, et al. 2018. Screening of eco-friendly thinning agents and adjusting mechanical thinning on 'Gala', 'Golden Delicious' and 'Fuji' apple trees. Scientia Horticulturae 239:141−55 doi: 10.1016/j.scienta.2018.05.027 |
[6] |
McArtney S, Palmer J, Davies S, Seymour S. 2006. Effects of lime sulfur and fish oil on pollen tube growth, leaf photosynthesis and fruit set in apple. HortScience 41:357−60 doi: 10.21273/HORTSCI.41.2.357 |
[7] |
Edgerton LJ, Greenhlagh WJ. 1969. Regulation of growth, flowering and fruit abscission with 2-chloroethanephosphonic acid. Journal of the American Society for Horticultural Science 94:11−13 doi: 10.21273/JASHS.94.1.11 |
[8] |
Dennis FG Jr. 2000. The history of fruit thinning. Plant Growth Regulation 31:1−16 doi: 10.1023/A:1006330009160 |
[9] |
Bukovac MJ, Sabbatini P, Schwallier PG, Schroeder M. 2008. Characterizing the interaction between NAA and BA on apple fruit abscission and development. HortScience 43:1794−801 doi: 10.21273/HORTSCI.43.6.1794 |
[10] |
Murneek AE. 1954. The embryo and endosperm in relation to fruit development, with special reference to the apple, Malus sylvestris. Journal of the American Society for Horticultural Science 64:573−82 |
[11] |
Hoffman MB, Edgerton LJ and Fisher EG. 1955. Comparisons of naphthaleneacetic acid and naphthaleneacetamide for thinning apples. Proceedings of the American Society for Horticultural Science 65:63−70 |
[12] |
Wertheim SJ. 2000. Developments in the chemical thinning of apple and pear. Plant Growth Regulation 31:85−100 doi: 10.1023/A:1006383504133 |
[13] |
Wismer PT, Proctor JTA, Elfving DC. 1995. Benzyladenine affects cell-division and cell-size during apple fruit thinning. Journal of the American Society for Horticultural Science 120:802−07 doi: 10.21273/JASHS.120.5.802 |
[14] |
Stopar M. 1998. Apple fruitlet thinning and photosynthate supply. The Journal of Horticultural Science and Biotechnology 73:461−66 doi: 10.1080/14620316.1998.11510999 |
[15] |
Deckers T, Schoofs H, Verjans W. 2010. Looking for solutions for chemical fruit thinning on apple. Acta Horticulturae 884:237−44 doi: 10.17660/ActaHortic.2010.884.27 |
[16] |
Stern RA. 2014. The photosynthesis inhibitor metamitron is an effective fruitlet thinner for 'Gala' apple in the warm climate of Israel. Scientia Horticulturae 178:163−67 doi: 10.1016/j.scienta.2014.08.005 |
[17] |
Galimba KD, Bullock DG, Dardick C, Liu Z, Callahan AM. 2019. Gibberellic acid induced parthenocarpic 'Honeycrisp' apples (Malus domestica) exhibit reduced ovary width and lower acidity. Horticulture Research 6:41 doi: 10.1038/s41438-019-0124-8 |
[18] |
Devoghalaere F, Doucen T, Guitton B, Keeling J, Payne W, et al. 2012. A genomics approach to understanding the role of auxin in apple (Malus × domestica) fruit size control. BMC Plant Biology 12:7 doi: 10.1186/1471-2229-12-7 |
[19] |
Yuan R, Carbaugh DH. 2007. Effects of NAA, AVG, and 1-MCP on ethylene biosynthesis, preharvest fruit drop, fruit maturity, and quality of 'Golden supreme' and 'Golden delicious' apples. HortScience 42:101−05 doi: 10.21273/HORTSCI.42.1.101 |
[20] |
Zhu H, Dardick CD, Beers EP, Callanhan AM, Xia R, et al. 2011. Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk. BMC Plant Biology 11:138 doi: 10.1186/1471-2229-11-138 |
[21] |
Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, et al. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics 49:1099−106 doi: 10.1038/ng.3886 |
[22] |
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9:357−59 doi: 10.1038/nmeth.1923 |
[23] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078−79 doi: 10.1093/bioinformatics/btp352 |
[24] |
Anders S, Pyl PT, Huber W. 2015. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166−69 doi: 10.1093/bioinformatics/btu638 |
[25] |
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550 doi: 10.1186/s13059-014-0550-8 |
[26] |
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009 |
[27] |
Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559 doi: 10.1186/1471-2105-9-559 |
[28] |
Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, et al. 2012. A travel guide to Cytoscape plugins. Nature Methods 9:1069−76 doi: 10.1038/nmeth.2212 |
[29] |
Wang S, Guo M, Huang K, Qi Q, Li W, et al. 2022. Genome-wide identification and characterization of long noncoding RNAs involved in apple fruit development and ripening. Scientia Horticulturae 295:110898 doi: 10.1016/j.scienta.2022.110898 |
[30] |
Lechner E, Leonhardt N, Eisler H, Parmentier Y, Alioua M, et al. 2011. MATH/BTB CRL3 receptors target the homeodomain-leucine zipper ATHB6 to modulate abscisic acid signaling. Developmental Cell 21:1116−28 doi: 10.1016/j.devcel.2011.10.018 |
[31] |
Puranik S, Sahu PP, Srivastava PS, Prasad M. 2012. NAC proteins: regulation and role in stress tolerance. Trends in Plant Science 17:369−81 doi: 10.1016/j.tplants.2012.02.004 |
[32] |
Mandadi KK, Misra A, Ren SX, McKnight TD. 2009. BT2, a BTB protein, mediates multiple responses to nutrients, stresses, and hormones in Arabidopsis. Plant Physiology 150:1930−39 doi: 10.1104/pp.109.139220 |
[33] |
Sutter JU, Campanoni P, Tyrrell M, Blatt MR. 2006. Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane. The Plant Cell 18:935−54 doi: 10.1105/tpc.105.038950 |
[34] |
Choi J, Eom S, Shin K, Lee RA, Choi S, et al. 2019. Identification of Lysine Histidine Transporter 2 as an 1-aminocyclopropane carboxylic acid transporter in Arabidopsis thaliana by transgenic complementation approach. Frontiers in Plant Science 10:1092 doi: 10.3389/fpls.2019.01092 |
[35] |
Hsieh MH, Goodman HM. 2002. Molecular characterization of a novel gene family encoding ACT domain repeat proteins in Arabidopsis. Plant Physiology 130:1797−806 doi: 10.1104/pp.007484 |
[36] |
Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL. 2004. WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 101:4706−11 doi: 10.1073/pnas.030557410 |
[37] |
Shen QX, Uknes SJ, Ho THD. 1993. Hormone response complex in a novel abscisic-acid and cycloheximide-inducible barley gene. The Journal of Biological Chemistry 268:23652−60 doi: 10.1016/S0021-9258(19)49512-4 |
[38] |
Lee S, Lee S, Yang KY, Kim YM, Park SY, et al. 2006. Overexpression of PRE1 and its homologous genes activates gibberellin-dependent responses in Arabidopsis thaliana. Plant and Cell Physiology 47:591−600 doi: 10.1093/pcp/pcj026 |
[39] |
Verma V, Sivaraman J, Srivastava AK, Sadanandom A, Kumar PP. 2015. Destabilization of interaction between cytokinin signaling intermediates AHP1 and ARR4 modulates Arabidopsis development. New Phytologist 206:726−37 doi: 10.1111/nph.13297 |
[40] |
Lü P, Yu S, Zhu N, Chen YR, Zhou B, et al. 2018. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nature Plants 4:784−91 doi: 10.1038/s41477-018-0249-z |
[41] |
Samuolienė G, Viškelienė A, Sirtautas R, Kviklys D. 2016. Relationships between apple tree rootstock, crop-load, plant nutritional status and yield. Scientia Horticulturae 211:167−73 doi: 10.1016/j.scienta.2016.08.027 |
[42] |
Al-Hinai YK, Roper TR. 2004. Rootstock effects on growth and quality of 'gala' apples. HortScience 39:1231−33 doi: 10.21273/HORTSCI.39.6.1231 |
[43] |
Castle WS. 1995. Rootstock as a fruit quality factor in citrus and deciduous tree crops. New Zealand Journal of Crop and Horticultural Science 23:383−94 doi: 10.1080/01140671.1995.9513914 |
[44] |
Palmer JW, Giuliani R, Adams HM. 1997. Effect of crop load on fruiting and leaf photosynthesis of 'Braeburn'/M. 26 apple trees. Tree Physiology 17:741−46 doi: 10.1093/treephys/17.11.741 |
[45] |
Naor A, Naschitz S, Peres M, Gal Y. 2008. Responses of apple fruit size to tree water status and crop load. Tree Physiology 28:1255−61 doi: 10.1093/treephys/28.8.1255 |
[46] |
Ferree DC. 1996. Performance of benzyladenine as a chemical thinner on eight apple cultivars. Journal of Tree Fruit Production 1:33−50 doi: 10.1300/J072v01n02_03 |
[47] |
Greene DW, Autio WR, Erf JA, Mao ZY. 1992. Mode of action of benzyladenine when used as a chemical thinner on apples. Journal of the American Society for Horticultural Science 117:775−79 doi: 10.21273/JASHS.117.5.775 |
[48] |
He L, Ren Z, Wang Y, Fu Y, Li Y, et al. 2020. Variation of growth-to-ripening time interval induced by abscisic acid and synthetic auxin affecting transcriptome and flavor compounds in cabernet sauvignon grape berry. Plants 9:630 doi: 10.3390/plants9050630 |
[49] |
Li J, Khan ZU, Tao X, Mao L, Luo Z, et al. 2017. Effects of exogenous auxin on pigments and primary metabolite profile of postharvest tomato fruit during ripening. Scientia Horticulturae 219:90−97 doi: 10.1016/j.scienta.2017.03.011 |
[50] |
Li J, Tao X, Li L, Mao L, Luo Z, et al. 2016. Comprehensive RNA-Seq analysis on the regulation of tomato ripening by exogenous auxin. PLoS ONE 11:e0156453 doi: 10.1371/journal.pone.0156453 |
[51] |
Ishibashi M, Yoshikawa H, Uno Y. 2017. Expression profiling of strawberry allergen fra a during fruit ripening controlled by exogenous auxin. International Journal of Molecular Sciences 18:1186 doi: 10.3390/ijms18061186 |
[52] |
Guo WJ, Ho THD. 2008. An abscisic acid-induced protein, HVA22, inhibits gibberellin-mediated programmed cell death in cereal aleurone cells. Plant Physiology 147:1710−22 doi: 10.1104/pp.108.120238 |
[53] |
Ji X, Zhang R, Wang N, Yang L, Chen X. 2015. Transcriptome profiling reveals auxin suppressed anthocyanin biosynthesis in red-fleshed apple callus (Malus sieversii f. niedzwetzkyana). Plant Cell, Tissue and Organ Culture (PCTOC) 123:389−404 doi: 10.1007/s11240-015-0843-y |
[54] |
Wang Y, Wang N, Xu H, Jiang S, Fang H, et al. 2018. Auxin regulates anthocyanin biosynthesis through the Aux/IAA-ARF signaling pathway in apple. Horticulture Research 5:59 doi: 10.1038/s41438-018-0068-4 |