[1]

Park SJ, Huh JW, Kim YH, Lee SR, Kim SH, et al. 2012. Selection of internal reference genes for normalization of quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis in the canine brain and other organs. Molecular Biotechnology 54:47−57

doi: 10.1007/s12033-012-9543-6
[2]

Gomez C, Terrier N, Torregrosa L, Vialet S, Fournier-Level A, et al. 2009. Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiology 150:402−15

doi: 10.1104/pp.109.135624
[3]

Li K, Xu N, Yang Y, Zhang J, Yin H. 2018. Identification and validation of reference genes for RT-qPCR normalization in Mythimna separata (Lepidoptera: Noctuidae). BioMed Research International 2018:1828253

doi: 10.1155/2018/1828253
[4]

Kumar S, Bink MCAM, Volz RK, Bus VGM, Chagné D. 2012. Towards genomic selection in apple (Malus × domestica Borkh.) breeding programmes: prospects, challenges and strategies. Tree Genetics & Genomes 8:1−14

doi: 10.1007/s11295-011-0425-z
[5]

Li C, Xu J, Deng Y, Sun H, Li Y. 2019. Selection of reference genes for normalization of cranberry (Vaccinium macrocarpon Ait.) gene expression under different experimental conditions. PLoS ONE 14:e0224798

doi: 10.1371/journal.pone.0224798
[6]

Luo M, Gao Z, Li H, Li Q, Zhang C, et al. 2018. Selection of reference genes for miRNA qRT-PCR under abiotic stress in grapevine. Scientific Reports 8:4444

doi: 10.1038/s41598-018-22743-6
[7]

Qu R, Miao Y, Cui Y, Cao Y, Zhou Y, et al. 2019. Selection of reference genes for the quantitative real-time PCR normalization of gene expression in Isatis indigotica fortune. BMC Molecular Biology 20:9

doi: 10.1186/s12867-019-0126-y
[8]

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3:research0034.1

doi: 10.1186/gb-2002-3-7-research0034
[9]

Andersen CL, Jensen JL, Ørntoft TF. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research 64:5245−50

doi: 10.1158/0008-5472.CAN-04-0496
[10]

Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnology Letters 26:509−15

doi: 10.1023/B:BILE.0000019559.84305.47
[11]

Dong Z, Chen P, Zhang N, Huang S, Zhang H, et al. 2019. Evaluation of reference genes for quantitative real-time PCR analysis of gene expression in Hainan medaka (Oryzias curvinotus). Gene Reports 14:94−99

doi: 10.1016/j.genrep.2018.11.008
[12]

Xie F, Xiao P, Chen D, Xu L, Zhang B. 2012. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Molecular Biology 80:75−84

doi: 10.1007/s11103-012-9885-2
[13]

Garg R, Sahoo A, Tyagi AK, Jain M. 2010. Validation of internal control genes for quantitative gene expression studies in chickpea (Cicer arietinum L.). Biochemical and Biophysical Research Communications 396:283−88

doi: 10.1016/j.bbrc.2010.04.079
[14]

van de Moosdijk AAA, van Amerongen R. 2016. Identification of reliable reference genes for qRT-PCR studies of the developing mouse mammary gland. Scientific Reports 6:35595

doi: 10.1038/srep35595
[15]

Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology 139:5−17

doi: 10.1104/pp.105.063743
[16]

Bai Y, Lv Y, Zeng M, Jia P, Lu H, et al. 2020. Selection of reference genes for normalization of gene expression in Thermobia domestica (Insecta: Zygentoma: Lepismatidae). Genes 12:21

doi: 10.3390/genes12010021
[17]

Jain M, Nijhawan A, Tyagi AK, Khurana JP. 2006. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications 345:646−51

doi: 10.1016/j.bbrc.2006.04.140
[18]

Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA. 2008. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biology 8:131

doi: 10.1186/1471-2229-8-131
[19]

Reid KE, Olsson N, Schlosser J, Peng F, Lund ST. 2006. An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biology 6:27

doi: 10.1186/1471-2229-6-27
[20]

Wan H, Zhao Z, Qian C, Sui Y, Malik A, et al. 2010. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Analytical Biochemistry 399:257−61

doi: 10.1016/j.ab.2009.12.008
[21]

Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, et al. 2008. Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227:1343−49

doi: 10.1007/s00425-008-0706-4
[22]

Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre JF, et al. 2008. The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnology Journal 6:609−18

doi: 10.1111/j.1467-7652.2008.00346.x
[23]

Li X, Gong P, Wang B, Wang C, Li M, et al. 2020. Selection and validation of experimental condition-specific reference genes for qRT-PCR in Metopolophium dirhodum (Walker) (Hemiptera: Aphididae). Scientific Reports 10:21951

doi: 10.1038/s41598-020-78974-z
[24]

Erkan M, Wang SY, Wang CY. 2008. Effect of UV treatment on antioxidant capacity, antioxidant enzyme and decay in strawberries fruit. Postharvest Biology and Technology 48:163−71

doi: 10.1016/j.postharvbio.2007.09.028
[25]

de L. de O. Pineli L, Moretti CL, dos Santos MS, Campos AB, Brasileiro AV, et al. 2011. Antioxidants and other chemical and physical characteristics of two strawberry cultivars at different ripeness stages. Journal of Food Composition and Analysis 24:11−16

doi: 10.1016/j.jfca.2010.05.004
[26]

Zhang Y, Peng X, Liu Y, Li Y, Luo Y, et al. 2018. Evaluation of suitable reference genes for qRT-PCR normalization in strawberry (Fragaria × ananassa) under different experimental conditions. BMC Molecular Biology 19:8

doi: 10.1186/s12867-018-0109-4
[27]

Amil-Ruiz F, Garrido-Gala J, Blanco-Portales R, Folta KM, et al. 2013. Identification and validation of reference genes for transcript normalization in strawberry (Fragaria × ananassa) defense responses. PLoS ONE 8:e70603

doi: 10.1371/journal.pone.0070603
[28]

Galli V, Borowski JM, Perin EC, da Silva Messias R, Labonde J, et al. 2015. Validation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in strawberry fruits using different cultivars and osmotic stresses. Gene 554:205−14

doi: 10.1016/j.gene.2014.10.049
[29]

Jia H, Jiu S, Zhang C, Wang C, Tariq P, et al. 2016. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor. Plant Biotechnology Journal 14:2045−65

doi: 10.1111/pbi.12563
[30]

Wu J, Xu Z, Zhang Y, Chai L, Yi H, et al. 2014. An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus. Journal of Experimental Botany 65:1651−71

doi: 10.1093/jxb/eru044
[31]

Wu L, Liu D, Wu J, Zhang R, Qin Z, et al. 2013. Regulation of FLOWERING LOCUS T by a MicroRNA in Brachypodium distachyon. The Plant Cell 25:4363−77

doi: 10.1105/tpc.113.118620
[32]

Yi S, Mao J, Zhang X, Li X, Zhang Z, et al. 2022. FveARF2 negatively regulates fruit ripening and quality in strawberry. Frontiers in Plant Science 13:1023739

doi: 10.3389/fpls.2022.1023739
[33]

López-Gómez C, Pino-Ángeles A, Órpez-Zafra T, Pinto-Medel MJ, Oliver-Martos B, et al. 2013. Candidate gene study of TRAIL and TRAIL Receptors: association with response to interferon beta therapy in multiple sclerosis patients. PLoS ONE 8:e62540

doi: 10.1371/journal.pone.0062540
[34]

Xiao X, Ma J, Wang J, Wu X, Li P, et al. 2014. Validation of suitable reference genes for gene expression analysis in the halophyte Salicornia europaea by real-time quantitative PCR. Frontiers in Plant Science 5:788

doi: 10.3389/fpls.2014.00788
[35]

Mao J, Wang Y, Wang B, Li J, Zhang C, et al. 2023. High-quality haplotype-resolved genome assembly of cultivated octoploid strawberry. Horticulture Research 10:uhad002

doi: 10.1093/hr/uhad002
[36]

Chen J, Zhou J, Hong Y, Li Z, Chen X, et al. 2021. Genome-wide identification of ubiquitin proteasome subunits as superior reference genes for transcript normalization during receptacle development in strawberry cultivars. BMC Genomics 22:88

doi: 10.1186/s12864-021-07393-9
[37]

Guo X, Xie Z, Zhang Y, Wang S. 2021. The FvCYP714C2 gene plays an important role in gibberellin synthesis in the woodland strawberry. Genes & Genomics 43:11−16

doi: 10.1007/s13258-020-01011-w
[38]

Li X, Fan J, Gruber J, Guan R, Frentzen M, et al. 2013. Efficient selection and evaluation of transgenic lines of Crambe abyssinica. Frontiers in Plant Science 4:162

doi: 10.3389/fpls.2013.00162
[39]

Chen C, Wu J, Hua Q, Tel-Zur N, Xie F, et al. 2019. Identification of reliable reference genes for quantitative real-time PCR normalization in pitaya. Plant Methods 15:70

doi: 10.1186/s13007-019-0455-3
[40]

Hao X, Horvath DP, Chao WS, Yang Y, Wang X, et al. 2014. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). International Journal of Molecular Sciences 15:22155−72

doi: 10.3390/ijms151222155
[41]

Zeng W, Sun Z, Cai Z, Chen H, Lai Z, et al. 2017. Comparative transcriptome analysis of soybean response to bean pyralid larvae. BMC Genomics 18:871

doi: 10.1186/s12864-017-4256-7
[42]

Yang H, Liu J, Huang S, Guo T, Deng L, et al. 2014. Selection and evaluation of novel reference genes for quantitative reverse transcription PCR (qRT-PCR) based on genome and transcriptome data in Brassica napus L. Gene 538:113−22

doi: 10.1016/j.gene.2013.12.057
[43]

Wei L, Mao W, Jia M, Xing S, Ali U, et al. 2018. FaMYB44.2, a transcriptional repressor, negatively regulates sucrose accumulation in strawberry receptacles through interplay with FaMYB10. Journal of Experimental Botany 69:4805−20

doi: 10.1093/jxb/ery249
[44]

Ric-Varas P, Barceló M, Rivera JA, Cerezo S, Matas AJ, et al. 2020. Exploring the use of fruit callus culture as a model system to study color development and cell wall remodeling during strawberry fruit ripening. Plants 9:805

doi: 10.3390/plants9070805
[45]

Barry CS, Giovannoni JJ. 2007. Ethylene and fruit ripening. Journal of Plant Growth Regulation 26:143−59

doi: 10.1007/s00344-007-9002-y
[46]

Zhang J, Lei Y, Wang B, Li S, Yu S, et al. 2020. The high-quality genome of diploid strawberry (Fragaria nilgerrensis) provides new insights into anthocyanin accumulation. Plant Biotechnology Journal 18:1908−24

doi: 10.1111/pbi.13351