[1]

Yang C, Liu X, Fan S. 2012. Investigation of the current status of resources of Strobilanthes cusia. Modern Chinese Medicine 14:33−35,38(in Chinese)

[2]

Chen RF. 2013. Research on tissue culture technology and vitrification prevention measure for Strobilanthes cusia (Nees) Ktze. Master's Thesis. Fujian Agriculture and Forestry University, China. pp. 7−8(in Chinese).

[3]

Huang YX. 2017. Exploration and functional research of the key genes related to pharmacodynamics substances in Baphicacanthus cusia. Doctor’s Thesis. Huaqiao University, China. pp. 1−2(in Chinese).

[4]

Liu B, Chen J, Li X, Zhang W, Huang Y, et al. 2021. Production overview, morphological observation and biochemical composition evaluation of Strobilanthes cusia. Chinese Journal of Tropical Agriculture 41:61−68(in Chinese)

[5]

Xu Z, Cai Y, Chen Y, Zhao Z, Ma Q, et al. 2021. Chemical constituents from the leaves of Baphicacanthus cusia. Journal of Chinese Medicinal Materials 44:1875−79(in Chinese)

doi: 10.13863/j.issn1001-4454.2021.08.016
[6]

Shao MH, Shang JY. 2018. Pharmacognosy analysis of leaves of Baphicacanthus cusia (Nees) Bremek. and its adulterants. Journal of Clinical Medical 5:171,76(in Chinese)

[7]

Zhong WG, Xu QH, Meng FD. 2011. Advances in study of Isatis indigotica. Ginseng Research 2011(3):38−41(in Chinese)

[8]

Zhu HH, Hu J, Lo-Coco F, Jin J. 2019. The simpler, the better: oral arsenic for acute promyelocytic leukemia. Blood 134:597−605

doi: 10.1182/blood.2019000760
[9]

Yang XX, Lv SH, Wu SJ. 1995. Studies of chemical constituents from the leaves of Baphicacanthus cusia. Chinese Traditional and Herbal Drugs 1995(12):622(in Chinese)

[10]

Wu YQ, Qian B, Zhang RP, Zou D, Liu G. 2005. Studies of chemical constituents from the roots of Baphicacanthus cusia. Chinese Traditional and Herbal Drugs 36:982−83(in Chinese)

[11]

Chen R, Lu Z, Guan D, Chen G, Li S. 1987. Studies of chemical constituents from the roots of Baphicacanthus cusia. Chinese Traditional and Herbal Drugs 18:488−90(in Chinese)

[12]

Tanaka T, Ikeda T, Kaku M, Zhu XH, Okawa M, et al. 2004. A new lignan glycoside and phenylethanoid glycosides from Strobilanthes cusia BREMEK. Chemical and Pharmaceutical Bulletin 52:1242−45

doi: 10.1248/cpb.52.1242
[13]

Liu Y, Ouyang F, Yu HY, Li L, Wang NL, et al. 2009. Chemical constituents in the leaves of Baphicacanthus cusia (Nees) Bremek. Chinese Journal of Medicinal Chemistry 19(4):273−275,283(in Chinese)

[14]

Feng QT, Zhu GY, Gao WN, Yang Z, Zhong N, et al. 2016. Two new alkaloids from the roots of Baphicacanthus cusia. Chemical and Pharmaceutical Bulletin 64:1505−8

doi: 10.1248/cpb.c16-00315
[15]

Zhu LJ, Cao F, Su XX, Li CY, Lin B, et al. 2020. Baphicacanthcusines A−E, Bisindole Alkaloids from the Leaves of Baphicacanthus cusia (Nees) Bremek. Journal of Organic Chemistry 85:8580−87

doi: 10.1021/acs.joc.0c00949
[16]

Bai B, Zhang Y, Xu Z, Huang Y, Ye S, et al. 2021. Chemical constituents and in vitro antitumor activities of Baphicacanthus cusia. Chinese Pharmaceutical Journal 56:1299−305(in Chinese)

[17]

Xu J, Hu Y, Wu J, Wu G, Zhao J. 2022. Extraction and optimization of flavonoids from Strobilanthes cusiastems and leaves and their antioxidant activity. Chemical Engineering & Equipment 2022(12):10−13+42(in Chinese)(in Chinese)

doi: 10.19566/j.cnki.cn35-1285/tq.2022.12.116
[18]

Hoessel R, Leclerc S, Endicott JA, Nobel ME, Lawrie A, et al. 1999. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nature Cell Biology 1:60−67

doi: 10.1038/9035
[19]

Wang L, Zhou GB, Liu P, Song JH, Liang Y, et al. 2008. Dissection of mechanisms of Chinese medicinal formula realgar-indigo naturalis as an effective treatment for promyelocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America 105:4826−31

doi: 10.1073/pnas.0712365105
[20]

Siegel RL, Miller KD, Wagle NS, Jemal A. 2023. Cancer statistics, 2023. CA: A Cancer Journal for Clinicians 73:17−48

doi: 10.3322/caac.21763
[21]

Wang J, Su W, Zhang T, Zhang S, Lei H, et al. 2023. Aberrant cyclin D1 splicing in cancer: from molecular mechanism to therapeutic modulation. Cell Death & Disease 14:244

doi: 10.1038/s41419-023-05763-7
[22]

Wei YF, Su J, Deng ZL, Zhu C, Yuan L, et al. 2015. Indirubin inhibits the proliferation of prostate cancer PC-3 cells. National Journal of Andrology 21:788−91(in Chinese)

[23]

Cao Z, Yang F, Wang J, Gu Z, Lin S, et al. 2021. Indirubin derivatives as dual inhibitors targeting cyclin-dependent kinase and histone deacetylase for treating cancer. Journal of Medicinal Chemistry 64:15280−96

doi: 10.1021/acs.jmedchem.1c01311
[24]

Zou Y, Zhang G, Li C, Long H, Chen D, et al. 2023. Discovery of tryptanthrin and its derivatives and its activities against NSCLC in vitro via both apoptosis and autophagy pathways. International Journal of Molecular Sciences 24:1450

doi: 10.3390/ijms24021450
[25]

La Sala G, Michiels C, Kükenshöner T, Brandstoetter T, Maurer B, et al. 2020. Selective inhibition of STAT3 signaling using monobodies targeting the coiled-coil and N-terminal domains. Nature Communications 11:4115

doi: 10.1038/s41467-020-17920-z
[26]

Zou S, Tong Q, Liu B, Huang W, Tian Y, et al. 2020. Targeting STAT3 in cancer immunotherapy. Molecular Cancer 19:145

doi: 10.1186/s12943-020-01258-7
[27]

Nam S, Buettner R, Turkson J, Kim D, Cheng JQ, et al. 2005. Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in human cancer cells. Proceedings of the National Academy of Sciences of the United States of America 102:5998−6003

doi: 10.1073/pnas.0409467102
[28]

Ferandin Y, Bettayeb K, Kritsanida M, Lozach O, Polychronopoulos P, et al. 2006. 3'-Substituted 7-halogenoindirubins, a new class of cell death inducing agents. Journal of Medicinal Chemistry 49:4638−49

doi: 10.1021/jm060314i
[29]

Nicolaou KA, Liapis V, Evdokiou A, Constantinou C, Magiatis P, et al. 2012. Induction of discrete apoptotic pathways by bromo-substituted indirubin derivatives in invasive breast cancer cells. Biochemical and Biophysical Research Communications 425:76−82

doi: 10.1016/j.bbrc.2012.07.053
[30]

Braig S, Bischoff F, Abhari BA, Meijer L, Fulda S, et al. 2014. The pleiotropic profile of the indirubin derivative 6BIO overcomes TRAIL resistance in cancer. Biochemical Pharmacology 91:157−67

doi: 10.1016/j.bcp.2014.07.009
[31]

Dilshara MG, Neelaka Molagoda IM, Prasad Tharanga Jayasooriya RG, Choi YH, Park C, et al. 2021. Indirubin-3'-monoxime induces paraptosis in MDA-MB-231 breast cancer cells by transmitting Ca2+ from endoplasmic reticulum to mitochondria. Archives of Biochemistry and Biophysics 698:108723

doi: 10.1016/j.abb.2020.108723
[32]

Pei L, Liu Y, Liu L, Gao S, Gao X, et al. 2023. Roles of cancer-associated fibroblasts (CAFs) in anti-PD-1/PD-L1 immunotherapy for solid cancers. Molecular Cancer 22:29

doi: 10.1186/s12943-023-01731-z
[33]

Yang J, Weinberg RA. 2008. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental Cell 14:818−29

doi: 10.1016/j.devcel.2008.05.009
[34]

Baram D, Vaday GG, Salamon P, Drucker I, Hershkoviz R, et al. 2001. Human mast cells release metalloproteinase-9 on contact with activated T cells: juxtacrine regulation by TNF-α. Journal of Immunology 167:4008−16

doi: 10.4049/jimmunol.167.7.4008
[35]

Dilshara MG, Molagoda IMN, Jayasooriya RGPT, Choi YH, Park C, et al. 2020. Indirubin-3'-monoxime inhibits AP-1-mediated matrix metalloproteinas-9 in LNCaP prostate cancer cells by activating the Nrf2/HO-1 signaling pathway. Latin American Journal of Pharmacy 39:269−78

[36]

Zeng Q, Luo C, Cho J, Lai D, Shen X, et al. 2021. Tryptanthrin exerts anti-breast cancer effects both in vitro and in vivo through modulating the inflammatory tumor microenvironment. Acta Pharmaceutica (Zagreb, Croatia) 71:245−66

doi: 10.2478/acph-2021-0020
[37]

Shi R, Li W, Zhang X, Zhang Y, Peng H, et al. 2011. A novel indirubin derivative PHII-7 potentiates adriamycin cytotoxicity via inhibiting P-glycoprotein expression in human breast cancer MCF-7/ADR cells. European Journal of Pharmacology 669:38−44

doi: 10.1016/j.ejphar.2011.07.047
[38]

Yu ST, Chen TM, Tseng SY, Chen YH. 2007. Tryptanthrin inhibits MDR1 and reverses doxorubicin resistance in breast cancer cells. Biochemical and Biophysical Research Communications 358:79−84

doi: 10.1016/j.bbrc.2007.04.107
[39]

Jun KY, Park SE, Liang JL, Jahng Y, et al. 2015. Benzo[b]tryptanthrin inhibits MDR1, topoisomerase activity, and reverses adriamycin resistance in breast cancer cells. ChemMedChem 10:827−35

doi: 10.1002/cmdc.201500068
[40]

Hu YL, Ning SJ, Ye Q, Ma XM, Cai GQ, et al. 2023. Genome size determination of Baphicacanthus cusia (Nees) Bremek. based on flow cytometry. Chinese Traditional Patent Medicine 45:634−36(in Chinese)

[41]

Lin WZ. 2015. Accumulation of effective components and its molecular basis of Baphicacanthus cusia (Nees) Bremek in Fujian province. Doctor's Thesis. Fujian Agriculture and Forestry University, China. pp. 63−65(in Chinese).

[42]

Lin W, Huang W, Ning S, Wang X, Ye Q, et al. 2018. De novo characterization of the Baphicacanthus cusia (Nees) Bremek transcriptome and analysis of candidate genes involved in indican biosynthesis and metabolism. PloS One 13:e0199788

doi: 10.1371/journal.pone.0199788
[43]

Lin W, Huang W, Ning S, Gong X, Ye Q, et al. 2019. Comparative transcriptome analyses revealed differential strategies of roots and leaves from methyl jasmonate treatment Baphicacanthus cusia (Nees) Bremek and differentially expressed genes involved in tryptophan biosynthesis. PloS ONE 14:e0212863

doi: 10.1371/journal.pone.0212863
[44]

Chen H, Shao J, Zhang H, Jiang M, Huang L, et al. 2018. Sequencing and analysis of Strobilanthes cusia (Nees) Kuntze chloroplast genome revealed the rare simultaneous contraction and expansion of the inverted repeat region in angiosperm. Frontiers in Plant Science 9:324

doi: 10.3389/fpls.2018.00324
[45]

Xu W, Zhang L, Cunningham AB, Li S, Zhuang H, et al. 2020. Blue genome: Chromosome-scale genome reveals the evolutionary and molecular basis of indigo biosynthesis in Strobilanthes cusia. Plant Journal 104:864−79

doi: 10.1111/tpj.14992
[46]

Lee JH, Lee J. 2010. Indole as an intercellular signal in microbial communities. FEMS Microbiology Reviews 34:426−44

doi: 10.1111/j.1574-6976.2009.00204.x
[47]

Herrmann KM, Weaver LM. 1999. The Shikimate Pathway. Annual Review of Plant Physiology and Plant Molecular Biology 50:473−503

doi: 10.1146/annurev.arplant.50.1.473
[48]

Hu Y, Ma D, Ning S, Ye Q, Zhao X, et al. 2021. High-quality genome of the medicinal plant Strobilanthes cusia provides insights into the biosynthesis of indole alkaloids. Frontiers in Plant Science 12:742420

doi: 10.3389/fpls.2021.742420
[49]

Huang H, Liu B, Liu L, Song S. 2017. Jasmonate action in plant growth and development. Journal of Experimental Botany 68:1349−59

doi: 10.1093/jxb/erw495
[50]

Jeon BJ, Yang HM, Lyu YS, Pae HO, Ju SM, et al. 2015. Apigenin inhibits indoxyl sulfate-induced endoplasmic reticulum stress and anti-proliferative pathways, CHOP and IL-6/p21, in human renal proximal tubular cells. European Review for Medical and Pharmacological Sciences 19:2303−10

[51]

Shen J, Ma X, Wei D. 2020. Cloning and bioinformatics analysis of anthranilate synthase gene from Baphicacanthus cusia. Genomics and Applied Biology 29:5773−80(in Chinese)

[52]

Ma X, Ning S, Ye Q, Hu Y, Cai G, Wei D. 2021. Cloning, bioinformatic analysis and expression analysis of BcASB gene from Baphicacanthus cusia. Chinese Traditional and Herbal Drugs 52:5697−706(in Chinese)

[53]

Cai G, Ning S, Ye Q, Hu Y, Ma X, Wei D. 2021. Cloning, expression analysis and prokaryotic expression of IGPS from Baphicacanthus cusia. Chinese Journal of Tropical Crops 42:2167−74(in Chinese)

[54]

Yu J, Zhang Y, Ning S, Ye Q, Tan H, et al. 2019. Molecular cloning and metabolomic characterization of the 5-enolpyruvylshikimate-3-phosphate synthase gene from Baphicacanthus cusia. BMC Plant Biology 19:485

doi: 10.1186/s12870-019-2035-0
[55]

Guo Z, Chen J, Lv Z, Huang Y, Tan H, et al. 2023. Molecular cloning and functional characterization of BcTSA in the biosynthesis of indole alkaloids in Baphicacanthus cusia. Frontiers in Plant Science 14:1174582

doi: 10.3389/fpls.2023.1174582
[56]

Zeng M, Zhong Y, Guo Z, Yang H, Zhu H, et al. 2022. Expression and functional study of BcWRKY1 in Baphicacanthus cusia (Nees) Bremek. Frontiers in Plant Science 13:919071

doi: 10.3389/fpls.2022.919071
[57]

Liu H, Huang R, Qu C, Liu S. 2022. Aqueous enzymatic method to extract indigo pigment from Baphicacanthus cusia leaves. Agricultural Science & Technology 23:33−39(in Chinese)

[58]

Ren J, Wang W, Li H. 1997. Recent developement on the study of indigo production process. Dyestuffs and Coloration 1997(4):22−24(in Chinese)

[59]

You SN. 2018. Biosynthesis of indigo by Cupriavidus sp. IDO and its functional genes. Master’s Thesis. Dalian University of Technology, China. pp. 5-7. (in Chinese)

[60]

Hsu TM, Welner DH, Russ ZN, Cervantes B, Prathuri RL, et al. 2018. Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nature Chemical Biology 14:256−61

doi: 10.1038/nchembio.2552
[61]

Yumoto I, Hirota K, Nodasaka Y, Yokota Y, Hoshino T, et al. 2004. Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. International Journal of Systematic and Evolutionary Microbiology 54:2379−83

doi: 10.1099/ijs.0.63130-0
[62]

Aino K, Narihiro T, Minamida K, Kamagata Y, Yoshimune K, et al. 2010. Bacterial community characterization and dynamics of indigo fermentation. FEMS Microbiology Ecology 74:174−83

doi: 10.1111/j.1574-6941.2010.00946.x
[63]

Lee JY, Shin YS, Shin HJ, Kim GJ. 2011. Production of natural indirubin from indican using non-recombinant Escherichia coli. Bioresource Technology 102:9193−8

doi: 10.1016/j.biortech.2011.06.072
[64]

Kayastha S, Sagwan-Barkdoll L, Anterola A, Jayakody LN. 2021. Developing synthetic microbes to produce indirubin-derivatives. Biocatalysis and Agricultural Biotechnology 37:102162

doi: 10.1016/j.bcab.2021.102162
[65]

Mansouri HR, Gracia Carmona O, Jodlbauer J, Schweiger L, Fink MJ, et al. 2022. Mutations increasing cofactor affinity, improve stability and activity of a Baeyer-Villiger monooxygenase. ACS Catalysis 12:11761−66

doi: 10.1021/acscatal.2c03225
[66]

Fraaije MW, Wu J, Heuts DPHM, van Hellemond EW, Spelberg JHL, et al. 2005. Discovery of a thermostable Baeyer-Villiger monooxygenase by genome mining. Applied Microbiology and Biotechnology 66:393−400

doi: 10.1007/s00253-004-1749-5
[67]

Núñez-Navarro N, Salazar Muñoz J, Castillo F, Ramírez-Sarmiento CA, Poblete-Castro I, et al. 2022. Discovery of new phenylacetone monooxygenase variants for the development of substituted indigoids through biocatalysis. International Journal of Molecular Sciences 23:12544

doi: 10.3390/ijms232012544
[68]

Han GH, Shin HJ, Kim SW. 2008. Optimization of bio-indigo production by recombinant E. coli harboring fmo gene. Enzyme and Microbial Technology 42:617−23

doi: 10.1016/j.enzmictec.2008.02.004
[69]

Han GH, Bang SE, Babu BK, Chang M, Shin HJ, et al. 2011. Bio-indigo production in two different fermentation systems using recombinant Escherichia coli cells harboring a flavin-containing monooxygenase gene (fmo). Process Biochemistry 46:788−91

doi: 10.1016/j.procbio.2010.10.015
[70]

Han GH, Gim GH, Kim W, Seo SI, Kim SW. 2013. Enhanced indirubin production in recombinant Escherichia coli harboring a flavin-containing monooxygenase gene by cysteine supplementation. Journal of Biotechnology 164:179−87

doi: 10.1016/j.jbiotec.2012.08.015
[71]

Bouhajja E, McGuire M, Liles MR, Bataille G, Agathos SN, George IF. 2017. Identification of novel toluene monooxygenase genes in a hydrocarbon-polluted sediment using sequence- and function-based screening of metagenomic libraries. Applied Microbiology and Biotechnology 101:797−808

doi: 10.1007/s00253-016-7934-5
[72]

McClay K, Boss C, Keresztes I, Steffan RJ. 2005. Mutations of toluene-4-monooxygenase that alter regiospecificity of indole oxidation and lead to production of novel indigoid pigments. Applied and Environmental Microbiology 71:5476−83

doi: 10.1128/AEM.71.9.5476-5483.2005
[73]

Wongsaroj L, Sallabhan R, Dubbs JM, Mongkolsuk S, Loprasert S. 2015. Cloning of toluene 4-monooxygenase genes and application of two-phase system to the production of the anticancer agent, indirubin. Molecular Biotechnology 57:720−26

doi: 10.1007/s12033-015-9863-4
[74]

Tischler D, Kermer R, Gröning JAD, Kaschabek SR, van Berkel WJH, et al. 2010. StyA1 and StyA2B from Rhodococcus opacus 1CP: a multifunctional styrene monooxygenase system. Journal of Bacteriology 192:5220−7

doi: 10.1128/JB.00723-10
[75]

Cheng L, Yin S, Chen M, Sun B, Hao S, et al. 2016. Enhancing indigo production by over-expression of the styrene monooxygenase in Pseudomonas putida. Current Microbiology 73:248−54

doi: 10.1007/s00284-016-1055-3
[76]

Du L, Yue J, Zhu Y, Yin S. 2022. Production of indigo by recombinant Escherichia coli with expression of monooxygenase, tryptophanase, and molecular chaperone. Foods 11:2117

doi: 10.3390/foods11142117
[77]

Pan Z, Tao D, Ren M, Cheng L. 2023. A combinational optimization method for efficient production of indigo by the recombinant Escherichia coli with expression of monooxygenase and malate dehydrogenase. Foods 12:502

doi: 10.3390/foods12030502
[78]

Hu WY, Li K, Weitz A, Wen A, Kim H, et al. 2022. Light-driven oxidative demethylation reaction catalyzed by a Rieske-type non-heme iron enzyme Stc2. ACS Catalysis 12:14559−70

doi: 10.1021/acscatal.2c04232
[79]

Pathak H, Madamwar D. 2010. Biosynthesis of indigo dye by newly isolated naphthalene-degrading strain Pseudomonas sp. HOB1 and its application in dyeing cotton fabric. Applied Biochemistry and Biotechnology 160:1616−26

doi: 10.1007/s12010-009-8638-4
[80]

Zhang X, Qu Y, Ma Q, Kong C, Zhou H, et al. 2014. Production of indirubin from tryptophan by recombinant Escherichia coli containing naphthalene dioxygenase genes from Comamonas sp. MQ. Applied Biochemistry and Biotechnology 172:3194−206

doi: 10.1007/s12010-014-0743-3
[81]

Kugel S, Baunach M, Baer P, Ishida-Ito M, Sundaram S, et al. 2017. Cryptic indole hydroxylation by a non-canonical terpenoid cyclase parallels bacterial xenobiotic detoxification. Nature Communications 8:15804

doi: 10.1038/ncomms15804
[82]

Yin H, Chen H, Yan M, Li Z, Yang R, et al. 2021. Efficient bioproduction of indigo and indirubin by optimizing a novel terpenoid cyclase XiaI in Escherichia coli. ACS Omega 6:20569−76

doi: 10.1021/acsomega.1c02679
[83]

Zhang Q, Xie J, Li G, Wang F, Lin J, et al. 2022. Psoriasis treatment using indigo naturalis: Progress and strategy. Journal of Ethnopharmacology 297:115522

doi: 10.1016/j.jep.2022.115522
[84]

Li Z, Wang H, Wei J, Han L, Guo Z. 2020. Indirubin exerts anticancer effects on human glioma cells by inducing apoptosis and autophagy. AMB Express 10:171

doi: 10.1186/s13568-020-01107-2
[85]

Shankar GM, Alex VV, Nisthul AA, Bava SV, Sundaram S, et al. 2020. Pre-clinical evidences for the efficacy of tryptanthrin as a potent suppressor of skin cancer. Cell Proliferation 53:e12710

doi: 10.1111/cpr.12710
[86]

Wang Q, Yu J, Hu Y, Chen X, Zhang L, et al. 2020. Indirubin alleviates bleomycin-induced pulmonary fibrosis in mice by suppressing fibroblast to myofibroblast differentiation. Biomedicine & Pharmacotherapy 131:110715

doi: 10.1016/j.biopha.2020.110715
[87]

Hagiyama M, Takeuchi F, Sugano A, Yoneshige A, Inoue T, et al. 2022. Indigo plant leaf extract inhibits the binding of SARS-CoV-2 spike protein to angiotensin-converting enzyme 2. Experimental and Therapeutic Medicine 23:274

doi: 10.3892/etm.2022.11200
[88]

Shi X, Zhang Y, Han J, Peng W, Fang Z, et al. 2021. Tryptanthrin regulates vascular smooth muscle cell phenotypic switching in atherosclerosis by AMP-activated protein kinase/acetyl-CoA carboxylase signaling pathway. Journal of Cardiovascular Pharmacology 77:642−49

doi: 10.1097/FJC.0000000000001008
[89]

Yang L, Li X, Huang W, Rao X, Lai Y. 2022. Pharmacological properties of indirubin and its derivatives. Biomedicine and Pharmacotherapy 151:113112

doi: 10.1016/j.biopha.2022.113112
[90]

Zhou X, Zhao S, Liu T, Yao L, Zhao M, et al. 2022. Schisandrol A protects AGEs-induced neuronal cells death by allosterically targeting ATP6V0d1 subunit of V-ATPase. Acta Pharmaceutica Sinica B 12:3843−60

doi: 10.1016/j.apsb.2022.06.013
[91]

Das A, Sarkar S, Bhattacharyya S, Gantait S. 2020. Biotechnological advancements in Catharanthus roseus (L.) G. Don. Applied Microbiology and Biotechnology 104:4811−35

doi: 10.1007/s00253-020-10592-1
[92]

Zhang Y, Zhou L, Xia J, Dong C, Luo X. 2021. Human microbiome and its medical applications. Frontiers in Molecular Biosciences 8:703585

doi: 10.3389/fmolb.2021.703585