[1]

Chamberlain D, Hyam R, Argent G, Fairweather G, Walter KS. 1996. The genus Rhododendron: its classification and synonymy. Edinburgh, UK: Royal Botanic Garden Edinburgh. viii, 181 pp.

[2]

Goetsch L, Eckert AJ, Hall BD. 2005. The molecular systematics of Rhododendron (Ericaceae): a phylogeny based upon RPB2 gene sequences. Systematic Botany 30:616−26

doi: 10.1600/0363644054782170
[3]

Geng Y. 2014. The genus Rhododendron of China. Shanghai: Shanghai Scientific and Technical Publishers. 312 pp.

[4]

Xia X, Yang M, Li C, Huang S, Jin W, et al. 2022. Spatiotemporal evolution of the global species diversity of Rhododendron. Molecular Biology and Evolution 39:msab314

doi: 10.1093/molbev/msab314
[5]

Sleumer H. 1949. Ein system der gattung Rhododendron L. Botanische Jahrbücherfür Systematik 74:511−53

[6]

Stevenson JB. 1930. The species of Rhododendron. London, UK: The Rhododendron Society. 562 pp.

[7]

Mo Z, Fu C, Zhu M, Milne RI, Yang J, et al. 2022. Resolution, conflict and rate shifts: insights from a densely sampled plastome phylogeny for Rhododendron (Ericaceae). Annals of Botany 130:687−701

doi: 10.1093/aob/mcac114
[8]

Kobayashi N. 2013. Evaluation and application of evergreen azalea resources of Japan. Acta Horticulturae 990:213−19

[9]

Kobayashi N, Handa T, Yoshimura K, Tsumura Y, Arisumi K, et al. 2000. Evidence for introgressive hybridization based on chloroplast dna polymorphisms and morphological variation in wild evergreen azalea populations of the kirishima mountains, Japan. Edinburgh Journal of Botany 57:209−19

doi: 10.1017/S0960428600000147
[10]

Shen Y, Yao G, Li Y, Tian X, Li S, et al. 2023. RAD-seq data reveals robust phylogeny and morphological evolutionary history of the ornamentally important plant genus, Rhododendron. Horticultural Plant Journal In Press

doi: 10.1016/j.hpj.2022.11.010
[11]

De Riek J, De Keyser E, Calsyn E, Eeckhaut T, Van Huylenbroeck J, et al. 2018. Azalea. In Ornamental Crops, ed. Van Huylenbroeck J. Vol 11. Cham: Springer International Publishing. pp. 37−71. https://doi.org/10.1007/978-3-319-90698-0_11

[12]

Zhou H, Liao J, Xia Y, Teng Y. 2013. Determination of genetic relationships between evergreen azalea cultivars in China using AFLP markers. Journal of Zhejiang University SCIENCE B 14:299−308

doi: 10.1631/jzus.B1200094
[13]

Ma Y, Mao X, Wang J, Zhang L, Jiang Y, et al. 2022. Pervasive hybridization during evolutionary radiation of Rhododendron subgenus Hymenanthes in mountains of southwest China. National Science Review 9:nwac276

doi: 10.1093/nsr/nwac276
[14]

Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, et al. 2018. Carotenoid metabolism in plants: the role of plastids. Molecular Plant 11:58−74

doi: 10.1016/j.molp.2017.09.010
[15]

Koes R, Verweij W, Quattrocchio F. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science 10:236−42

doi: 10.1016/j.tplants.2005.03.002
[16]

Grotewold E. 2006. The genetics and biochemistry of floral pigment. Annual Review of Plant Biology 57:761−80

doi: 10.1146/annurev.arplant.57.032905.105248
[17]

Tanaka Y, Sasaki N, Ohmiya A. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal 54:733−49

doi: 10.1111/j.1365-313X.2008.03447.x
[18]

Spethmann W. 1980. Flavonoids and carotenoids of Rhododendron flowers and their significance for the classification of the genus Rhododendron. In Contributions toward a Classification of Rhododendron, eds Luteyn JL, O'Brien ME. New York: New York Botanical Garden. pp. 247−76

[19]

Rausher MD. 2008. Evolutionary transitions in floral color. International Journal of Plant Sciences 169:7−21

doi: 10.1086/523358
[20]

Du H, Lai L, Wang F, Sun W, Zhang L, et al. 2018. Characterisation of flower colouration in 30 Rhododendron species via anthocyanin and flavonol identification and quantitative traits. Plant Biology 20:121−29

doi: 10.1111/plb.12649
[21]

de Camargo MGG, Lunau K, Batalha MA, Brings S, de Brito VLG, et al. 2019. How flower colour signals allure bees and hummingbirds: a community-level test of the bee avoidance hypothesis. New Phytologist 222:1112−22

doi: 10.1111/nph.15594
[22]

Hopkins R, Rausher MD. 2012. Pollinator-mediated selection on flower color allele drives reinforcement. Science 335:1090−92

doi: 10.1126/science.1215198
[23]

Sun S, Liao K, Xia J, Guo Y. 2005. Floral colour change in Pedicularis monbeigiana (Orobanchaceae). Plant Systematics and Evolution 255:77−85

doi: 10.1007/s00606-005-0348-y
[24]

Marks RA, Hotaling S, Frandsen PB, VanBuren R. 2021. Representation and participation across 20 years of plant genome sequencing. Nature Plants 7:1571−78

doi: 10.1038/s41477-021-01031-8
[25]

Ma H, Liu Y, Liu D, Sun W, Liu X, et al. 2021. Chromosome-level genome assembly and population genetic analysis of a critically endangered rhododendron provide insights into its conservation. The Plant Journal 107:1533−45

doi: 10.1111/tpj.15399
[26]

Nie S, Zhao S, Shi T, Zhao W, Zhang R, et al. 2023. Gapless genome assembly of azalea and multi-omics investigation into divergence between two species with distinct flower color. Horticulture Research 10:uhac241

doi: 10.1093/hr/uhac241
[27]

Shirasawa K, Kobayashi N, Nakatsuka A, Ohta H, Isobe S. 2021. Whole-genome sequencing and analysis of two azaleas, Rhododendron ripense and Rhododendron kiyosumense. DNA Research 28:dsab010

doi: 10.1093/dnares/dsab010
[28]

Soza VL, Lindsley D, Waalkes A, Ramage E, Patwardhan RP, et al. 2019. The Rhododendron genome and chromosomal organization provide insight into shared whole-genome duplications across the heath family (Ericaceae). Genome Biology and Evolution 11:3353−71

doi: 10.1093/gbe/evz245
[29]

Wang X, Gao Y, Wu X, Wen X, Li D, et al. 2021. High-quality evergreen azalea genome reveals tandem duplication-facilitated low-altitude adaptability and floral scent evolution. Plant Biotechnology Journal 19:2544−60

doi: 10.1111/pbi.13680
[30]

Wu X, Zhang L, Wang X, Zhang R, Jin G, et al. 2023. Evolutionary history of two evergreen Rhododendron species as revealed by chromosome-level genome assembly. Frontiers in Plant Science 14:1123707

doi: 10.3389/fpls.2023.1123707
[31]

Yang F, Nie S, Liu H, Shi T, Tian X, et al. 2020. Chromosome-level genome assembly of a parent species of widely cultivated azaleas. Nature Communications 11:5269

doi: 10.1038/s41467-020-18771-4
[32]

Zhang L, Xu P, Cai Y, Ma L, Li S, et al. 2017. The draft genome assembly of Rhododendron delavayi Franch var. delavayi. GigaScience 6:gix076

doi: 10.1093/gigascience/gix076
[33]

Zhou G, Li Y, Pei F, Gong T, Chen T, et al. 2022. Chromosome-scale genome assembly of Rhododendron molle provides insights into its evolution and terpenoid biosynthesis. BMC Plant Biology 22:342

doi: 10.1186/s12870-022-03720-8
[34]

Zhou X, Li J, Wang H, Han J, Zhang K, et al. 2022. The chromosome-scale genome assembly, annotation and evolution of Rhododendron henanense subsp. lingbaoense. Molecular Ecology Resources 22:988−1001

doi: 10.1111/1755-0998.13529
[35]

Chang Y, Zhang R, Ma Y, Sun W. 2023. A haplotype-resolved genome assembly of Rhododendron vialii based on PacBio HiFi reads and Hi-C data. Scientific Data 10:451

doi: 10.1038/s41597-023-02362-1
[36]

Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods 18:170−75

doi: 10.1038/s41592-020-01056-5
[37]

Tang L. 2019. Circular consensus sequencing with long reads. Nature Methods 16:958−58

doi: 10.1038/s41592-019-0605-6
[38]

De Loose R. 1969. The flower pigments of the belgian hybrids of Rhododendron simsii and other species and varieties from Rhododendron subseries obtusum. Phytochemistry 8:253−59

doi: 10.1016/S0031-9422(00)85822-7
[39]

Liu X, Wang Y, Shen S. 2022. Transcriptomic and metabolomic analyses reveal the altitude adaptability and evolution of different-colored flowers in alpine Rhododendron species. Tree Physiology 42:1100−13

doi: 10.1093/treephys/tpab160
[40]

Liu N, Zhang L, Zhou Y, Tu M, Wu Z, et al. 2021. The Rhododendron Plant Genome Database (RPGD): a comprehensive online omics database for Rhododendron. BMC Genomics 22:376

doi: 10.1186/s12864-021-07704-0
[41]

Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ. 2018. Genome size diversity and its impact on the evolution of land plants. Genes 9:88

doi: 10.3390/genes9020088
[42]

Hidalgo O, Pellicer J, Christenhusz MJM, Schneider H, Leitch IJ. 2017. Genomic gigantism in the whisk-fern family (Psilotaceae): Tmesipteris obliqua challenges record holder Paris japonica. Botanical Journal of the Linnean Society 183:509−14

doi: 10.1093/botlinnean/box003
[43]

Kelly LJ, Renny-Byfield S, Pellicer J, Macas J, Novák P, et al. 2015. Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. New Phytologist 208:596−607

doi: 10.1111/nph.13471
[44]

Kovach A, Wegrzyn JL, Parra G, Holt C, Bruening GE, et al. 2010. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics 11:420

doi: 10.1186/1471-2164-11-1
[45]

Landis JB, Soltis DE, Li Z, Marx HE, Barker MS, et al. 2018. Impact of whole-genome duplication events on diversification rates in angiosperms. American Journal of Botany 105:348−63

doi: 10.1002/ajb2.1060
[46]

Larson DA, Walker JF, Vargas OM, Smith SA. 2020. A consensus phylogenomic approach highlights paleopolyploid and rapid radiation in the history of Ericales. American Journal of Botany 107:773−89

doi: 10.1002/ajb2.1469
[47]

Stull GW, Soltis PS, Soltis DE, Gitzendanner MA, Smith SA. 2020. Nuclear phylogenomic analyses of asterids conflict with plastome trees and support novel relationships among major lineages. American Journal of Botany 107:790−805

doi: 10.1002/ajb2.1468
[48]

Wang Y, Chen F, Ma Y, Zhang T, Sun P, et al. 2021. An ancient whole-genome duplication event and its contribution to flavor compounds in the tea plant (Camellia sinensis). Horticulture Research 8:176

doi: 10.1038/s41438-021-00613-z
[49]

Chen H, Zeng Y, Yang Y, Huang L, Tang B, et al. 2020. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications 11:2494

doi: 10.1038/s41467-020-16338-x
[50]

Zhang C, Zhang T, Luebert F, Xiang Y, Huang C, et al. 2020. Asterid phylogenomics/phylotranscriptomics uncover morphological evolutionary histories and support phylogenetic placement for numerous whole-genome duplications. Molecular Biology and Evolution 37:3188−210

doi: 10.1093/molbev/msaa160
[51]

Chen J, Zheng C, Ma J, Jiang C, Ercisli S, et al. 2020. The chromosome-scale genome reveals the evolution and diversification after the recent tetraploidization event in tea plant. Horticulture Research 7:63

doi: 10.1038/s41438-020-0288-2
[52]

Barker MS, Arrigo N, Baniaga AE, Li Z, Levin DA. 2016. On the relative abundance of autopolyploids and allopolyploids. New Phytologist 210:391−98

doi: 10.1111/nph.13698
[53]

Kellogg EA. 2016. Has the connection between polyploidy and diversification actually been tested? Current Opinion in Plant Biology 30:25−32

doi: 10.1016/j.pbi.2016.01.002
[54]

Linder CR, Rieseberg LH. 2004. Reconstructing patterns of reticulate evolution in plants. American Journal of Botany 91:1700−08

doi: 10.3732/ajb.91.10.1700
[55]

Lynch M, Conery JS. 2000. The evolutionary fate and consequences of duplicate genes. Science 290:1151−55

doi: 10.1126/science.290.5494.1151
[56]

Page RDM. 1994. Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Systematic Biology 43:58−77

doi: 10.1093/sysbio/43.1.58
[57]

Rabier CE, Ta T, Ané C. 2014. Detecting and locating whole genome duplications on a phylogeny: a probabilistic approach. Molecular Biology and Evolution 31:750−62

doi: 10.1093/molbev/mst263
[58]

Shi T, Huang H, Barker MS. 2010. Ancient genome duplications during the evolution of kiwifruit (Actinidia) and related Ericales. Annals of Botany 106:497−504

doi: 10.1093/aob/mcq129
[59]

Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America 115:E4151−E4158

doi: 10.1073/pnas.1719622115
[60]

Nie S, Tian X, Kong L, Zhao S, Chen Z, et al. 2022. Potential allopolyploid origin of Ericales revealed with gene-tree reconciliation. Frontiers in Plant Science 13:1006904

doi: 10.3389/fpls.2022.1006904
[61]

Depuydt T, De Rybel B, Vandepoele K. 2023. Charting plant gene functions in the multi-omics and single-cell era. Trends in Plant Science 28:283−96

doi: 10.1016/j.tplants.2022.09.008
[62]

Shen S, Zhan C, Yang C, Fernie AR, Luo J. 2023. Metabolomics-centered mining of plant metabolic diversity and function: past decade and future perspectives. Molecular Plant 16:43−63

doi: 10.1016/j.molp.2022.09.007
[63]

Park CH, Yeo HJ, Kim NS, Park YE, Park SY, et al. 2018. Metabolomic profiling of the white, violet, and red flowers of Rhododendron schlippenbachii Maxim. Molecules 23:827

doi: 10.3390/molecules23040827
[64]

Wang S, Li Z, Jin W, Fang Y, Yang Q, Xiang J. 2018. Transcriptome analysis and identification of genes associated with flower development in Rhododendron pulchrum Sweet (Ericaceae). Gene 679:108−18

doi: 10.1016/j.gene.2018.08.083
[65]

Xiao Z, Su J, Sun X, Li C, He L, et al. 2018. De novo transcriptome analysis of Rhododendron molle G. Don flowers by Illumina sequencing. Genes & Genomics 40:591−601

doi: 10.1007/s13258-018-0662-8
[66]

Ye L, Mӧller M, Luo Y, Zou J, Zheng W, et al. 2021. Differential expressions of anthocyanin synthesis genes underlie flower color divergence in a sympatric Rhododendron sanguineum complex. BMC Plant Biology 21:204

doi: 10.1186/s12870-021-02977-9
[67]

Thi Thanh Huyen D, Ureshino K, Thanh Van D, Miyajima I. 2016. Co-pigmentation of anthocyanin-flavonol in the blotch area of Rhododendron simsii planch. flowers. The Horticulture Journal 85:232−37

doi: 10.2503/hortj.MI-092
[68]

Li Z, Yang Q, Dong X, Zhu Y, Zhao S, et al. 2021. Transcriptome analysis of flower color variation in five Rhododendron species (Ericaceae). Brazilian Journal of Botany 44:685−95

doi: 10.1007/s40415-021-00720-0
[69]

Long F, Wu H, Li H, Zuo W, Ao Q. 2023. Genome-wide analysis of MYB transcription factors and screening of MYBs involved in the red color formation in Rhododendron delavayi. International Journal of Molecular Sciences 24:4641

doi: 10.3390/ijms24054641
[70]

Wang C, Ye D, Li Y, Hu P, Xu R, et al. 2023. Genome-wide identification and bioinformatics analysis of the WRKY transcription factors and screening of candidate genes for anthocyanin biosynthesis in azalea (Rhododendron simsii). Frontiers in Genetics 14:1172321

doi: 10.3389/fgene.2023.1172321
[71]

Chen Y, Ma T, Zhang L, Kang M, Zhang Z, et al. 2020. Genomic analyses of a "living fossil": the endangered dove-tree. Molecular Ecology Resources 20:756−69

doi: 10.1111/1755-0998.13138
[72]

Sun X, He L, Guo Z, Xiao Z, Su J, et al. 2022. Comparative transcriptome analyses reveal genes related to pigmentation in the petals of a flower color variation cultivar of Rhododendron obtusum. Molecular Biology Reports 49:2641−53

doi: 10.1007/s11033-021-07070-w
[73]

Wang Y, Zhang G, He J, Xu S, Liu X, et al. 2020. Research progress of Rhododendron flower color. World Forestry Research 33:19−24

doi: 10.13348/j.cnki.sjlyyj.2020.0028.y
[74]

Deng W, Zhang K, Busov V, Wei H. 2017. Recursive random forest algorithm for constructing multilayered hierarchical gene regulatory networks that govern biological pathways. PLoS ONE 12:e0171532

doi: 10.1371/journal.pone.0171532
[75]

Leslie AC. 2008. The international Rhododendron register and checklist (2004), fourth supplement. UK: University Press, Cambridge. 27 pp. www.rhs.org.uk/plants/pdfs/plant-register-supplements/rhododendrons/4thrhodosupp.pdf

[76]

Zhuang P. 2012. Discuss on the Rhododendron geographical distribution types and their cause of formation in China. Guihaia 94:150−56

doi: 10.3969/j.issn.1000-3142.2012.02.003
[77]

Lan X, Zhang L, Zhang J, Cui H, Jiang C, et al. 2012. Research progress of Rhododendron breeding. Acta Horticulturae Sinica 39:1829−38

doi: 10.16420/j.issn.0513-353x.2012.09.022
[78]

Zhuang P. 2019. Progress on the fertility of Rhododendron. Biodiversity Science 27:327−38

doi: 10.17520/biods.2018345
[79]

Zhang C, Gao L, Xue R, Yang J. 2004. A general review of the research and conservation statue of Chinese Rhododendron. Guangxi Sciences 11:354−59, 362

[80]

Cheng J, Li M, Yuan T, Huang H, Yang G, et al. 2021. A dataset on wild Rhododendron and geographical distribution information in China. Biodiversity Science 29:1175−80

doi: 10.17520/biods.2021152
[81]

Fang L, Mao J, Xu D, Dong Y, Zhou Y, et al. 2021. Development of high quality EST-SSR markers in Rhododendron obtusum Hort. ex Wats. and their use in determining relationships among Rhododendron cultivars. Genetic Resources and Crop Evolution 68:3271−84

doi: 10.1007/s10722-021-01186-5
[82]

Zhang C, Huang C, Huang J, Wang L, Zhang J, et al. 2015. Investigation of germplasm resources of the genus Rhododendron in Baili nature reserve in Guizhou. Plant Diversity 37:357−64

[83]

Fu C, Mo Z, Yang J, Cai J, Ye L, et al. 2022. Testing genome skimming for species discrimination in the large and taxonomically difficult genus Rhododendron. Molecular Ecology Resources 22:404−14

doi: 10.1111/1755-0998.13479
[84]

Pucker B, Irisarri I, de Vries J, Xu B. 2022. Plant genome sequence assembly in the era of long reads: progress, challenges and future directions. Quantitative Plant Biology 3:e5

doi: 10.1017/qpb.2021.18
[85]

Yang Y, Saand MA, Huang L, Abdelaal WB, Zhang J, et al. 2021. Applications of multi-omics technologies for crop improvement. Frontiers in Plant Science 12:563953

doi: 10.3389/fpls.2021.563953