[1] |
Lesk C, Anderson W, Rigden A, Coast O, Jägermeyr J, et al. 2022. Compound heat and moisture extreme impacts on global crop yields under climate change. Nature Reviews Earth & Environment 3:872−89 doi: 10.1038/s43017-022-00368-8 |
[2] |
Dietz KJ, Zörb C, Geilfus CM. 2021. Drought and crop yield. Plant Biology 23:881−93 doi: 10.1111/plb.13304 |
[3] |
Yoo CY, Pence HE, Hasegawa PM, Mickelbart MV. 2009. Regulation of transpiration to improve crop water use. Critical Reviews in Plant Sciences 28:410−31 doi: 10.1080/07352680903173175 |
[4] |
Dalal A, Attia Z, Moshelion M. 2017. To produce or to survive: how plastic is your crop stress physiology? Frontiers in Plant Science 8:2067 doi: 10.3389/fpls.2017.02067 |
[5] |
Sharma B, Molden D, Cook S. 2015. Water use efficiency in agriculture: measurement, current situation and trends. In Managing Water and Fertiliser for Sustainable Agricultural Intensification, eds Drechsel P, Heffer P, Magan H, Mikkelsen R, Wichlens D. Paris, France: International Fertiliser Association. pp. 39−64. https://doi.org/10.22004/ag.econ.208411 |
[6] |
Medrano H, Tomás M, Martorell S, Flexas J, Hernández E, et al. 2015. From leaf to whole-plant water use efficiency (WUE) in complex canopies: limitations of leaf WUE as a selection target. The Crop Journal 3:220−28 doi: 10.1016/j.cj.2015.04.002 |
[7] |
Blum A. 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research 112:119−23 doi: 10.1016/j.fcr.2009.03.009 |
[8] |
Condon AG. 2020. Drying times: plant traits to improve crop water use efficiency and yield. Journal of Experimental Botany 71:2239−52 doi: 10.1093/jxb/eraa002 |
[9] |
Sun T, Cheng R, Jiang R, Liu Y, Sun Y, et al. 2023. Combining functional physiological phenotyping and simulation model to estimate dynamic water use efficiency and infer transpiration sensitivity traits. European Journal of Agronomy 150:126955 doi: 10.1016/j.eja.2023.126955 |
[10] |
Fracasso A, Magnanini E, Marocco A, Amaducci S. 2017. Real-time determination of photosynthesis, transpiration, water-use efficiency and gene expression of two Sorghum bicolor (Moench) genotypes subjected to dry-down. Frontiers in Plant Science 8:932 doi: 10.3389/fpls.2017.00932 |
[11] |
Medina S, Vicente R, Nieto-Taladriz MT, Aparicio N, Chairi F, et al. 2018. The plant-transpiration response to vapor pressure deficit (VPD) in durum wheat is associated with differential yield performance and specific expression of genes involved in primary metabolism and water transport. Frontiers in Plant Science 9:1994 doi: 10.3389/fpls.2018.01994 |
[12] |
Du T, Meng P, Huang J, Peng S, Xiong D. 2020. Fast photosynthesis measurements for phenotyping photosynthetic capacity of rice. Plant Methods 16:6 doi: 10.1186/s13007-020-0553-2 |
[13] |
Yang H, Shukla MK, Mao X, Kang S, Du T. 2019. Interactive regimes of reduced irrigation and salt stress depressed tomato water use efficiency at leaf and plant scales by affecting leaf physiology and stem sap flow. Frontiers in Plant Science 10:160 doi: 10.3389/fpls.2019.00160 |
[14] |
Gosa SC, Lupo Y, Moshelion M. 2019. Quantitative and comparative analysis of whole-plant performance for functional physiological traits phenotyping: new tools to support pre-breeding and plant stress physiology studies. Plant Science 282:49−59 doi: 10.1016/j.plantsci.2018.05.008 |
[15] |
Vadez V, Kholova J, Medina S, Kakkera A, Anderberg H. 2014. Transpiration efficiency: new insights into an old story. Journal of Experimental Botany 65:6141−53 doi: 10.1093/jxb/eru040 |
[16] |
Ge Y, Atefi A, Zhang H, Miao C, Ramamurthy RK, et al. 2019. High-throughput analysis of leaf physiological and chemical traits with VIS-NIR-SWIR spectroscopy: a case study with a maize diversity panel. Plant Methods 15:66 doi: 10.1186/s13007-019-0450-8 |
[17] |
Li Y, Wu X, Xu W, Sun Y, Wang Y, et al. 2021. High-throughput physiology-based stress response phenotyping: advantages, applications and prospective in horticultural plants. Horticultural Plant Journal 7:181−87 doi: 10.1016/j.hpj.2020.09.004 |
[18] |
Dalal A, Shenhar I, Bourstein R, Mayo A, Grunwald Y, et al. 2020. A telemetric, gravimetric platform for real-time physiological phenotyping of plant-environment interactions. Journal of Visualized Experiments 162:e61280 doi: 10.3791/61280 |
[19] |
Sinclair TR. 2012. Is transpiration efficiency a viable plant trait in breeding for crop improvement? Functional Plant Biology 39:359−65 doi: 10.1071/fp11198 |
[20] |
Sun T, Jiang R, Shi Z, Moshelion M, Sun Y, et al. 2023. Development of a quantification method for "golden WUE" trait and its application in common beans. Acta Horticulturae Sinica 51(3):656−68 doi: 10.16420/j.issn.0513-353x.2023-0106 |
[21] |
Halperin O, Gebremedhin A, Wallach R, Moshelion M. 2017. High-throughput physiological phenotyping and screening system for the characterization of plant–environment interactions. The Plant Journal 89:839−50 doi: 10.1111/tpj.13425 |
[22] |
Jaramillo Roman V, van de Zedde R, Peller J, Visser RGF, van der Linden CG, et al. 2021. High-resolution analysis of growth and transpiration of quinoa under saline conditions. Frontiers in Plant Science 12:634311 doi: 10.3389/fpls.2021.634311 |
[23] |
Guo Z, Yang Q, Huang F, Zheng H, Sang Z, et al. 2021. Development of high-resolution multiple-SNP arrays for genetic analyses and molecular breeding through genotyping by target sequencing and liquid chip. Plant Communications 2:100230 doi: 10.1016/j.xplc.2021.100230 |
[24] |
Mabire C, Duarte J, Darracq A, Pirani A, Rimbert H, et al. 2019. High throughput genotyping of structural variations in a complex plant genome using an original Affymetrix® axiom® array. BMC Genomics 20:848 doi: 10.1186/s12864-019-6136-9 |
[25] |
Rahman MZ, Hasan MT, Rahman J. 2023. Kompetitive allele-specific PCR (KASP): an efficient high-throughput genotyping platform and its applications in crop variety development. In Molecular Marker Techniques, ed. Kumar N. Singapore: Springer Nature Singapore. pp. 25−54. https://doi.org/10.1007/978-981-99-1612-2_2 |
[26] |
Song B, Ning W, Wei D, Jiang M, Zhu K, et al. 2023. Plant genome resequencing and population genomics: current status and future prospects. Molecular Plant 16:1252−68 doi: 10.1016/j.molp.2023.07.009 |
[27] |
Pandey AK, Jiang L, Moshelion M, Gosa SC, Sun T, et al. 2021. Functional physiological phenotyping with functional mapping: a general framework to bridge the phenotype-genotype gap in plant physiology. iScience 24:102846 doi: 10.1016/j.isci.2021.102846 |
[28] |
Davis SL, Dukes MD. 2010. Irrigation scheduling performance by evapotranspiration-based controllers. Agricultural Water Management 98:19−28 doi: 10.1016/j.agwat.2010.07.006 |
[29] |
Bwambale E, Abagale FK, Anornu GK. 2023. Smart irrigation for climate change adaptation and improved food security. In Irrigation and Drainage - Recent Advances, eds Muhammad S, Fiaz A. Rijeka: IntechOpen. 13 pp. http://dx.doi.org/10.5772/intechopen.106628 |
[30] |
Bwambale E, Abagale FK, Anornu GK. 2022. Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: a review. Agricultural Water Management 260:107324 doi: 10.1016/j.agwat.2021.107324 |
[31] |
Blum A. 2005. Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research 56:1159−68 doi: 10.1071/AR05069 |
[32] |
Song Q, Zhu X. 2018. Measuring canopy gas exchange using canopy photosynthesis and transpiration systems (CAPTS). In Photosynthesis. Methods in Molecular Biology, ed. Covshoff S. Vol 1770. New York, NY: Humana Press. pp. 69−81. https://doi.org/10.1007/978-1-4939-7786-4_4 |
[33] |
Li X, Yang J, Shen M, Xie X, Liu G, et al. 2020. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nature Communications 11:2815 doi: 10.1038/s41467-020-16485-1 |
[34] |
Shen Y, Wang J, Shaw RK, Yu H, Sheng X, et al. 2021. Development of GBTS and KASP panels for genetic diversity, population structure, and fingerprinting of a large collection of Broccoli (Brassica oleracea L. var. italica) in China. Frontiers in Plant Science 12:655254 doi: 10.3389/fpls.2021.655254 |
[35] |
Cuevas HE, Rosa-Valentin G, Hayes CM, Rooney WL, Hoffmann L. 2017. Genomic characterization of a core set of the USDA-NPGS Ethiopian sorghum germplasm collection: implications for germplasm conservation, evaluation, and utilization in crop improvement. BMC Genomics 18:108 doi: 10.1186/s12864-016-3475-7 |
[36] |
Hasan N, Choudhary S, Naaz N, Sharma N, Laskar RA. 2021. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology 19:128 doi: 10.1186/s43141-021-00231-1 |