[1]

Vu LD, Gevaert K, De Smet I. 2018. Protein language: Post-translational modifications talking to each other. Trends In Plant Science 23:1068−80

doi: 10.1016/j.tplants.2018.09.004
[2]

Khan RA, Abbas N. 2023. Role of epigenetic and post-translational modifications in anthocyanin biosynthesis: A review. Gene 887:147694

doi: 10.1016/j.gene.2023.147694
[3]

Han D, Yu Z, Lai J, Yang C. 2022. Post-translational modification: a strategic response to high temperature in plants. aBIOTECH 15(3):49−64

doi: 10.1007/s42994-021-00067-w
[4]

Ghelis T. 2011. Signal processing by protein tyrosine phosphorylation in plants. Plant Signaling and Behavior 6:942−51

doi: 10.4161/psb.6.7.15261
[5]

Silva-Sanchez C, Li H, Chen S. 2015. Recent advances and challenges in plant phosphoproteomics. Proteomics 15:1127−41

doi: 10.1002/pmic.201400410
[6]

Chao J, Huang Z, Yang S, Deng X, Tian W. 2020. Genome-wide identification and expression analysis of the phosphatase 2A family in rubber tree (Hevea brasiliensis). PLoS One 15:e0228219

doi: 10.1371/journal.pone.0228219
[7]

Dephoure N, Gould KL, Gygi SP, Kellogg DR. 2013. Mapping and analysis of phosphorylation sites: A quick guide for cell biologists. Molecular Biology of The Cell 24:535−42

doi: 10.1091/mbc.e12-09-0677
[8]

Vu LD, Stes E, Bel MV, Nelissen H, Maddelein D, et al. 2016. An up-to date workflow for plant (phospho) proteomics identifies differential drought-responsive, phosphorylation events in Maize leaves. Journal of Proteome Research 15:4304−17

doi: 10.1021/acs.jproteome.6b00348
[9]

Zhang Z, Ke D, Hu M, Zhang C, Deng L, et al. 2019. Quantitative phosphoproteomic analyses provide evidence for extensive phosphorylation of regulatory proteins in the rhizobia-legume symbiosis. Plant Molecular Biology 100:265−83

doi: 10.1007/s11103-019-00857-3
[10]

Hakimi NMF, Lee SH, Lum WC, Mohamad SF, Osman Al Edrus SS, et al. 2021. Surface Modified Nanocellulose and Its Reinforcement in Natural Rubber Matrix Nanocomposites: A Review. Polymers 13:3241

doi: 10.3390/polym13193241
[11]

Cherian S, Ryu SB, Cornish K. 2019. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Plant Biotechnology Journal 17:2041−61

doi: 10.1111/pbi.13181
[12]

Priyadarshan PM, Goncalves PDS. 2003. Hevea gene pool for breeding. Genetic Resources and Crop Evolution 50:101−114

doi: 10.1023/A:1022972320696
[13]

Hao BZ, Wu JL. 2000. Laticifer differentiation in Hevea brasiliensis: induction by exogenous jasmonic acid and linolenic acid. Annals of Botany 85:37−43

doi: 10.1006/anbo.1999.0995
[14]

Wang KLC, Li H, Ecker JR. 2002. Ethylene biosynthesis and signaling networks. The Plant Cell 14:S131−S151

doi: 10.1105/tpc.001768
[15]

Dubois M, Van den Broeck L, Inzé D. 2018. The pivotal role of ethylene in plant growth. Trends In Plant Science 23:311−23

doi: 10.1016/j.tplants.2018.01.003
[16]

Nakano Y, Mitsuda N, Ide K, Mori T, Mira FR, et al. 2021. Transcriptome analysis of Pará rubber tree (H. brasiliensis) seedlings under ethylene stimulation. BMC Plant Biology 21:420

doi: 10.1186/s12870-021-03196-y
[17]

Liu JP, Zhuang YF, Guo XL, Li YJ. 2016. Molecular mechanism of ethylene stimulation of latex yield in rubber tree (Hevea brasiliensis) revealed by de novo sequencing and transcriptome analysis. BMC Genomics 17:257

doi: 10.1186/s12864-016-2587-4
[18]

Wang D, Xie Q, Sun Y, Tong Z, Chang L, et al. 2019. Proteomic Landscape Has Revealed Small Rubber Particles Are Crucial Rubber Biosynthetic Machines for Ethylene-Stimulation in Natural Rubber Production. International Journal of Molecular Sciences 20:5082

doi: 10.3390/ijms20205082
[19]

Dai L, Kang G, Nie Z, Li Y, Zeng R. 2016. Comparative proteomic analysis of latex from Hevea brasiliensis treated with Ethrel and methyl jasmonate using iTRAQ-coupled two-dimensional LC-MS/MS. Journal of Proteomics 132:167−75

doi: 10.1016/j.jprot.2015.11.012
[20]

Wang X, Wang D, Sun Y, Yang Q, Chang L, et al. 2015. Comprehensive Proteomics Analysis of Laticifer Latex Reveals New Insights into Ethylene Stimulation of Natural Rubber Production. Scientific Reports 5:13778

doi: 10.1038/srep13778
[21]

Chao J, Yang S, Chen Y, Tian WM. 2017. Transcript Profiling of Hevea brasiliensis during Latex Flow. Frontiers in Plant Science 8:1904

doi: 10.3389/fpls.2017.01904
[22]

Wang X, Shi M, Lu X, Ma R, Wu C, et al. 2010. A method for protein extraction from different subcellular fractions of laticifer latex in Hevea brasiliensis compatible with 2-DE and MS. Proteome Science 8:35

doi: 10.1186/1477-5956-8-35
[23]

Chao J, Wu S, Shi M, Xu X, Gao Q, et al. 2023. Genomic insight into domestication of rubber tree. Nature Communications 14:4651

doi: 10.1038/s41467-023-40304-y
[24]

Lee TY, Lin ZQ, Hsieh SJ, Bretaña NA, Lu CT. 2011. Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences. Bioinformatics 27:1780−87

doi: 10.1093/bioinformatics/btr291
[25]

Amagai A, Honda Y, Ishikawa S, Hara Y, Kuwamura M, et al. 2018. Phosphoproteomic profiling reveals ABA-responsive phosphosignaling pathways in Physcomitrella patens. The Plant Journal 94:699−708

doi: 10.1111/tpj.13891
[26]

Ji J, Yang L, Fang Z, Zhang Y, Zhuang M, et al. 2022. Plant SWEET Family of Sugar Transporters: Structure, Evolution and Biological Functions. Biomolecules 12:205

doi: 10.3390/biom12020205
[27]

Chen Q, Hu T, Li X, Song CP, Zhu JK, et al. 2022. Phosphorylation of SWEET sucrose transporters regulates plant root: shoot ratio under drought. Nature Plants 8:68−77

doi: 10.1038/s41477-021-01040-7
[28]

Tang C, Huang D, Yang J, Liu S, Sakr S, et al. 2010. The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree). Plant Cell and Environment 33:1708−20

doi: 10.1111/j.1365-3040.2010.02175.x
[29]

Kitajima S, Sakakibara R, Uyeda K. 1983. Significance of phosphorylation of phosphofructokinase. Journal of Biological Chemistry 258:13292−98

doi: 10.1016/S0021-9258(17)44115-9
[30]

Ren M, Yang X, Bie J, Wang Z, Liu M, et al. 2020. Citrate synthase desuccinylation by SIRT5 promotes colon cancer cell proliferation and migration. Biological Chemistry 401:1031−1039

doi: 10.1515/hsz-2020-0118
[31]

Wei H, Xu C, Movahedi A, Sun W, Li D, et al. 2019. Characterization and function of 3-hydroxy-3-methylglutaryl-CoA reductase in Populus trichocarpa: Overexpression of PtHMGR enhances terpenoids in transgenic poplar. Frontiers in Plant Science 10:1476

doi: 10.3389/fpls.2019.01476
[32]

Shi MJ, Cai FG, Tian WM. 2016. Ethrel-stimulated prolongation of latex flow in the rubber tree (Hevea brasiliensis Muell. Arg.): an Hev b 7-like protein acts as a universal antagonist of rubber particle aggregating factors from lutoids and C-serum. Journal Of Biochemistry 159:209−16

doi: 10.1093/jb/mvv095
[33]

Xin X, Wei D, Lei L, Zheng H, Wallace IS, et al. 2023. CALCIUM-DEPENDENT PROTEIN KINASE32 regulates cellulose biosynthesis through post-translational modification of cellulose synthase. New Phytologist 239:2212−2224

doi: 10.1111/nph.19106
[34]

Shi M, Li Y, Deng S, Wang D, Chen Y, et al. 2019. The formation and accumulation of protein-networks by physical interactions in the rapid occlusion of laticifer cells in rubber tree undergoing successive mechanical wounding. BMC Plant Biology 19:8

doi: 10.1186/s12870-018-1617-6
[35]

Kohama K, Kohno T, Okagaki T, Shimmen, T. 1991. Role of actin in the myosin-linked Ca2+-regulation of ATP-dependent interaction between actin and myosin of a lower eukaryote, Physarum polycephalum. Journal of Biochemistry 110:508−513

doi: 10.1093/oxfordjournals.jbchem.a123611
[36]

Zhang Y, Leclercq J, Montoro P. 2017. Reactive oxygen species in Hevea brasiliensis latex and relevance to Tapping Panel Dryness. Tree Physiology 37:261−269

doi: 10.1093/treephys/tpw106
[37]

Csar XF, Wilson NJ, Strike P, Sparrow L, McMahon KA, et al. 2001. Copper/zinc superoxide dismutase is phosphorylated and modulated specifically by granulocyte-colony stimulating factor in myeloid cells. Proteomics 1:435−43

doi: 10.1002/1615-9861(200103)1:3<435::AID-PROT435>3.0.CO;2-Q