[1]

Ferrándiz C, Gu Q, Martienssen R, Yanofsky MF. 2000. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127:725−34

doi: 10.1242/dev.127.4.725
[2]

Smyth DR. 1995. Flower development: origin of the cauliflower. Current Biology 54:361−63

doi: 10.1016/S0960-9822(95)00072-8
[3]

Azpeitia E, Tichtinsky G, Le Masson M, Serrano-Mislata A, Lucas J, et al. 2021. Cauliflower fractal forms arise from perturbations of floral gene networks. Science 373:192−97

doi: 10.1126/science.abg5999
[4]

Keck AS, Finley JW. 2004. Cruciferous vegetables: cancer protective mechanisms of glucosinolate hydrolysis products and selenium. Integrative Cancer Therapies 3:5−12

doi: 10.1177/1534735403261
[5]

Zhang Y, Dong Y, Wang P, Zhu P, Li Y, et al. 2023. Cauliflower-shaped Pleurotus ostreatus cultivated in an atmosphere with high environmental carbon dioxide concentration. Mycologia 115:153−63

doi: 10.1080/00275514.2022.2149013
[6]

Auzeeri T. 2021. Robot for harvesting cauliflower, and the cutting of cauliflowers. Thesis. University of Plymouth, UK.

[7]

Dixit J, Rawat NJ. 2022. Development and evaluation of self-propelled cabbage/cauliflower harvester. Journal of Agricultural Science 4:56−63

doi: 10.36956/njas.v4i1.471
[8]

Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, et al. 2004. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiology 134:1642−53

doi: 10.1104/pp.103.033696
[9]

Fujioka S, Yokota T. 2003. Biosynthesis and metabolism of brassinosteroids. Annual Review of Plant Biology 54:137−64

doi: 10.1146/annurev.arplant.54.031902.134921
[10]

Li Z, Zhang X, Zhao Y, Li Y, Zhang G, et al. 2018. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnology Journal 161:86−99

doi: 10.1111/pbi.12751
[11]

Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, et al. 2005. The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. The Plant Cell 17:2243−54

doi: 10.1105/tpc.105.030973
[12]

Thomas SG. 2017. Novel Rht-1 dwarfing genes: tools for wheat breeding and dissecting the function of DELLA proteins. Journal of Experimental Botany 68:354−58

doi: 10.1093/jxb/erw509
[13]

Huang C, Yang M, Shao D, Wang Y, Wan S, et al. 2020. Fine mapping of the BnUC2 locus related to leaf up-curling and plant semi-dwarfing in Brassica napus. BMC Genomics 21:530

doi: 10.1186/s12864-020-06947-7
[14]

Wang Y, Chen W, Chu P, Wan S, Yang M, et al. 2016. Mapping a major QTL responsible for dwarf architecture in Brassica napus using a single-nucleotide polymorphism marker approach. BMC Plant Biology 16:178

doi: 10.1186/s12870-016-0865-6
[15]

Singh BK, Singh B, Singh PM. 2018. Breeding cauliflower: a review. International Journal of Vegetable Science 24:58−84

doi: 10.1080/19315260.2017.1354242
[16]

Sun D, Wang C, Zhang X, Zhang W, Jiang H, et al. 2019. Draft genome sequence of cauliflower Brassica oleracea L. var. botrytis provides new insights into the C genome in Brassica species. Horticulture Research 6:82

doi: 10.1038/s41438-019-0164-0
[17]

Guo N, Wang S, Gao L, Liu Y, Wang X, et al. 2021. Genome sequencing sheds light on the contribution of structural variants to Brassica oleracea diversification. BMC Biology 19:93

doi: 10.1186/s12915-021-01031-2
[18]

Shen Y, Xiang Y, Xu E, Ge X, Li Z. 2018. Major co-localized QTL for plant height, branch initiation height, stem diameter, and flowering time in an alien introgression derived Brassica napus DH population. Frontiers in Plant Science 9:390

doi: 10.3389/fpls.2018.00390
[19]

Wu Y, Bhat PR, Close TJ, Lonardi S. 2008. Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genetics 4:e1000212

doi: 10.1371/journal.pgen.1000212
[20]

Kosambi DD. 1943. The estimation of map distances from recombination values. In D.D. Kosambi, ed. Ramaswamy R. New Delhi: Springer. pp. 125–30. https://doi.org/10.1007/978-81-322-3676-4_16

[21]

Hedden P. 2003. The genes of the Green Revolution. Trends in Genetics 19:5−9

doi: 10.1016/S0168-9525(02)00009-4
[22]

Khush GS. 2001. Green revolution: the way forward. Nature Reviews Genetics 2:815−22

doi: 10.1038/35093585
[23]

Liu C, Wang J, Huang T, Wang F, Yuan F, et al. 2010. A missense mutation in the VHYNP motif of a DELLA protein causes a semi-dwarf mutant phenotype in Brassica napus. Theoretical and Applied Genetics 121:249−58

doi: 10.1007/s00122-010-1306-9
[24]

Wang M, Zhao Y, Chen F, Yin X. 2004. Inheritance and potentials of a mutated dwarfing gene ndf1 in Brassica napus. Plant Breeding 123:449−53

doi: 10.1111/j.1439-0523.2004.01014.x
[25]

Zhao B, Li H, Li J, Wang B, Dai C, et al. 2017. Brassica napus DS-3, encoding a DELLA protein, negatively regulates stem elongation through gibberellin signaling pathway. Theoretical and Applied Genetics 130:727−41

doi: 10.1007/s00122-016-2846-4
[26]

Zhao B, Wang B, Li Z, Guo T, Zhao J, et al. 2019. Identification and characterization of a new dwarf locus DS-4 encoding an Aux/IAA7 protein in Brassica napus. Theoretical and Applied Genetics 132:1435−49

doi: 10.1007/s00122-019-03290-8
[27]

Cheng H, Jin F, Zaman QU, Ding B, Hao M, et al. 2019. Identification of Bna. IAA7. C05 as allelic gene for dwarf mutant generated from tissue culture in oilseed rape. BMC Plant Biology 19:500

doi: 10.1186/s12870-019-2094-2
[28]

Wang X, Zheng M, Liu H, Zhang L, Chen F, et al. 2020. Fine-mapping and transcriptome analysis of a candidate gene controlling plant height in Brassica napus L. Biotechnology for Biofuels 13:42

doi: 10.1186/s13068-020-01687-y
[29]

Li B, Liu X, Guo Y, Deng L, Qu L, et al. 2023. BnaC01. BIN2, a GSK3-like kinase, modulates plant height and yield potential in Brassica napus. Theoretical and Applied Genetics 136:29

doi: 10.1007/s00122-023-04325-x
[30]

Xiao X, Li J, Lyu J, Feng Z, Zhang G, et al. 2022. Chemical fertilizer reduction combined with bio-organic fertilizers increases cauliflower yield via regulation of soil biochemical properties and bacterial communities in Northwest China. Frontiers in Microbiology 13:922149

doi: 10.3389/fmicb.2022.922149
[31]

Dong H, Yan S, Liu J, Liu P, Sun J. 2019. TaCOLD1 defines a new regulator of plant height in bread wheat. Plant Biotechnology Journal 17:687−99

doi: 10.1111/pbi.13008
[32]

Song J, Li L, Liu B, Dong Y, Dong Y, et al. 2023. Fine mapping of reduced height locus RHT26 in common wheat. Theoretical and Applied Genetics 136:62

doi: 10.1007/s00122-023-04331-z
[33]

Kumar K, Neelam K, Bhatia D, Kaur R, Khanna R, et al. 2020. High resolution genetic mapping and identification of a candidate gene(s) for the purple sheath color and plant height in an interspecific F2 population derived from Oryza nivara Sharma & Shastry × Oryza sativa L. cross. Genetic Resources and Crop Evolution 67:97−105

doi: 10.1007/s10722-019-00869-4
[34]

Yang M, He J, Wan S, Li W, Chen W, et al. 2021. Fine mapping of the BnaC04. BIL1 gene controlling plant height in Brassica napus L. BMC Plant Biology 21:359

doi: 10.1186/s12870-021-03137-9
[35]

He Q, Zhi H, Tang S, Xing L, Wang S, et al. 2021. QTL mapping for foxtail millet plant height in multi-environment using an ultra-high density bin map. Theoretical and Applied Genetics 134:557−72

doi: 10.1007/s00122-020-03714-w
[36]

Shen Y, Yang Y, Xu E, Ge X, Xiang Y, et al. 2018. Novel and major QTL for branch angle detected by using DH population from an exotic introgression in rapeseed (Brassica napus L.). Theoretical and Applied Genetics 131:67−78

doi: 10.1007/s00122-017-2986-1
[37]

Singh S, Kalia P. 2021. Advances in cauliflower (Brassica oleracea var. botrytis L.) breeding, with emphasis on India. In Advances in Plant Breeding Strategies: Vegetable Crops, eds Al-Khayri JM, Jain SM, Johnson DV. Cham: Springer. pp. 247–301. https://doi.org/10.1007/978-3-030-66969-0_7

[38]

Mackay TFC. 2009. Q&A: genetic analysis of quantitative traits. Journal of Biology 83:23

doi: 10.1186/jbiol133
[39]

Wang X, Han B, Sun Y, Kang X, Zhang M, et al. 2022. Introgression of chromosome 1P from Agropyron cristatum reduces leaf size and plant height to improve the plant architecture of common wheat. Theoretical and Applied Genetics 135:1951−63

doi: 10.1007/s00122-022-04086-z
[40]

Bishop GJ, Yokota T. 2001. Plants steroid hormones, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant and Cell Physiology 42:114−20

doi: /10.1093/pcp/pce018
[41]

Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, et al. 1998. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. The Plant Cell 10:231−43

doi: 10.1105/tpc.10.2.231
[42]

Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, et al. 2005. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. The Plant Cell 17:776−90

doi: 10.1105/tpc.104.024950
[43]

Klahre U, Noguchi T, Fujioka S, Takatsuto S, Yokota T, et al. 1998. The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. The Plant Cell 10:1677−90

doi: 10.1105/tpc.10.10.1677
[44]

Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, et al. 1999. The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 96:1761−66

doi: 10.1073/pnas.96.4.1761
[45]

Youn JH, Kim TW, Joo SH, Son SH, Roh J, et al. 2018. Function and molecular regulation of DWARF1 as a C-24 reductase in brassinosteroid biosynthesis in Arabidopsis. Journal of Experimental Botany 69:1873−86

doi: 10.1093/jxb/ery038
[46]

Ridge S, Brown PH, Hecht V, Driessen RG, Weller JL. 2015. The role of BoFLC2 in cauliflower (Brassica oleracea var. botrytis L.) reproductive development. Journal of Experimental Botany 66:125−35

doi: 10.1093/jxb/eru408
[47]

Cao W, Cao B, Wang X, Bai J, Xu Y, et al. 2020. Alternatively spliced BobCAL transcripts alter curd morphotypes in a collection of Chinese cauliflower accessions. Horticulture Research 7:160

doi: 10.1038/s41438-020-00378-x
[48]

Li J, Nagpal P, Vitart V, Mcmorris TC, Chory J. 1996. A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272:398−401

doi: 10.1126/science.272.5260.398
[49]

Fujiyama K, Hino T, Kanadani M, Watanabe B, Jae Lee H, et al. 2019. Structural insights into a key step of brassinosteroid biosynthesis and its inhibition. Nature Plants 5:589−94

doi: 10.1038/s41477-019-0436-6