[1]

Loupit G, Brocard L, Ollat N, Cookson SJ. 2023. Grafting in plants: recent discoveries and new applications. Journal of Experimental Botany 74:2433−47

doi: 10.1093/jxb/erad061
[2]

Henriques R, Calderan-Rodrigues MJ, Luis Crespo J, Baena-González E, Caldana C. 2022. Growing of the TOR world. Journal of Experimental Botany 73:6987−92

doi: 10.1093/jxb/erac401
[3]

Pfeiffer A, Janocha D, Dong Y, Medzihradszky A, Schöne S, et al. 2016. Integration of light and metabolic signals for stem cell activation at the shoot apical meristem. eLife 5:e17023

[4]

Li X, Cai W, Liu Y, Li H, Fu L, et al. 2017. Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes. Proceedings of the National Academy of Sciences of the United States of America 114:2765−70

doi: 10.1073/pnas.1618782114
[5]

Schepetilnikov M, Makarian J, Srour O, Geldreich A, Yang Z, et al. 2017. GTPase ROP2 binds and promotes activation of target of rapamycin, TOR, in response to auxin. The EMBO Journal 36:886−903

doi: 10.15252/embj.201694816
[6]

Chen GH, Liu MJ, Xiong Y, Sheen J, Wu SH. 2018. TOR and RPS6 transmit light signals to enhance protein translation in deetiolating Arabidopsis seedlings. Proceedings of the National Academy of Sciences of the United States of America 115:12823−28

doi: 10.1073/pnas.1809526115
[7]

D'Alessandro S, Velay F, Lebrun R, Mehrez M, Romand S, et al. 2023. Post-translational regulation of photosynthetic activity via the TOR kinase in plants. BioRxiv [preprint

doi: 10.1101/2023.05.05.539554
[8]

Shokrian Hajibehzad S, Silva SS, Peeters N, Stouten E, Buijs G, et al. 2023. Arabidopsis thaliana rosette habit is controlled by combined light and energy signaling converging on transcriptional control of the TALE homeobox gene ATH1. New Phytologist 239:1051−67

doi: 10.1111/nph.19014
[9]

Favero DS, Lambolez A, Sugimoto K. 2021. Molecular pathways regulating elongation of aerial plant organs: a focus on light, the circadian clock, and temperature. The Plant Journal 105:392−420

doi: 10.1111/tpj.14996
[10]

Schepetilnikov M, Dimitrova M, Mancera-Martínez E, Geldreich A, Keller M, et al. 2013. TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. The EMBO Journal 32:1087−102

doi: 10.1038/emboj.2013.61
[11]

Mancera-Martínez E, Dong Y, Makarian J, Srour O, Thiébeauld O, et al. 2021. Phosphorylation of a reinitiation supporting protein, RISP, determines its function in translation reinitiation. Nucleic Acids Research 49:6908−24

doi: 10.1093/nar/gkab501
[12]

Zhang Z, Zhu J, Roh J, Marchive C, Kim SK, et al. 2016. TOR signaling promotes accumulation of BZR1 to balance growth with carbon availability in Arabidopsis. Current Biology 26:1854−60

doi: 10.1016/j.cub.2016.05.005
[13]

Montes C, Wang P, Liao CY, Nolan TM, Song G, et al. 2022. Integration of multi-omics data reveals interplay between brassinosteroid and Target of Rapamycin Complex signaling in Arabidopsis. New Phytologist 236:893−910

doi: 10.1111/nph.18404
[14]

Xiong F, Zhang R, Meng Z, Deng K, Que Y, et al. 2017. Brassinosteriod Insensitive 2 (BIN2) acts as a downstream effector of the Target of Rapamycin (TOR) signaling pathway to regulate photoautotrophic growth in Arabidopsis. New Phytologist 213:233−49

doi: 10.1111/nph.14118
[15]

Liao CY, Pu Y, Nolan TM, Montes C, Guo H, et al. 2023. Brassinosteroids modulate autophagy through phosphorylation of RAPTOR1B by the GSK3-like kinase BIN2 in Arabidopsis. Autophagy 19:1293−310

doi: 10.1080/15548627.2022.2124501
[16]

Smailov B, Alybayev S, Smekenov I, Mursalimov A, Saparbaev M, et al. 2020. Wheat germination is dependent on plant target of rapamycin signaling. Frontiers in Cell and Developmental Biology 8:606685

doi: 10.3389/fcell.2020.606685
[17]

Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, et al. 2007. The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Reports 8:864−70

doi: 10.1038/sj.embor.7401043
[18]

Xiong Y, McCormack M, Li L, Hall Q, Xiang C, et al. 2013. Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496:181−86

doi: 10.1038/nature12030
[19]

Salazar-Díaz K, Dong Y, Papdi C, Ferruzca-Rubio EM, Olea-Badillo G, et al. 2021. TOR senses and regulates spermidine metabolism during seedling establishment and growth in maize and Arabidopsis. iScience 24:103260

doi: 10.1016/j.isci.2021.103260
[20]

Sharma M, Sharma M, Jamsheer KM, Laxmi A. 2022. A glucose–target of rapamycin signaling axis integrates environmental history of heat stress through maintenance of transcription-associated epigenetic memory in Arabidopsis. Journal of Experimental Botany 73:7083−102

doi: 10.1093/jxb/erac338
[21]

Dong Y, Uslu VV, Berr A, Singh G, Papdi C, et al. 2023. TOR represses stress responses through global regulation of H3K27 trimethylation in plants. Journal of Experimental Botany 74:1420−31

doi: 10.1093/jxb/erac486
[22]

Li X, Liang T, Liu H. 2022. How plants coordinate their development in response to light and temperature signals. The Plant Cell 34:955−66

doi: 10.1093/plcell/koab302
[23]

Stitz M, Kuster D, Reinert M, Schepetilnikov M, Berthet B, et al. 2023. TOR acts as a metabolic gatekeeper for auxin-dependent lateral root initiation in Arabidopsis thaliana. The EMBO Journal 42:e111273

doi: 10.15252/embj.2022111273
[24]

Lee K, Seo PJ. 2017. Arabidopsis TOR signaling is essential for sugar-regulated callus formation. Journal of Integrative Plant Biology 59:742−46

doi: 10.1111/jipb.12560
[25]

Deng K, Dong P, Wang W, Feng L, Xiong F, et al. 2017. The TOR pathway is involved in adventitious root formation in Arabidopsis and potato. Frontiers in Plant Science 8:784

doi: 10.3389/fpls.2017.00784
[26]

Liu Y, Xiong Y. 2022. Plant target of rapamycin signaling network: complexes, conservations, and specificities. Journal of Integrative Plant Biology 64:342−70

doi: 10.1111/jipb.13212
[27]

Rodriguez E, Chevalier J, Olsen J, Ansbøl J, Kapousidou V, et al. 2020. Autophagy mediates temporary reprogramming and dedifferentiation in plant somatic cells. The EMBO Journal 39:e103315

doi: 10.15252/embj.2019103315
[28]

Ye R, Wang M, Du H, Chhajed S, Koh J, et al. 2022. Glucose-driven TOR–FIE–PRC2 signalling controls plant development. Nature 609:986−93

doi: 10.1038/s41586-022-05171-5
[29]

Mozgova I, Hennig L. 2015. The polycomb group protein regulatory network. Annual Review of Plant Biology 66:269−96

doi: 10.1146/annurev-arplant-043014-115627
[30]

Omary M, Matosevich R, Efroni I. 2023. Systemic control of plant regeneration and wound repair. New Phytologist 237:408−13

doi: 10.1111/nph.18487
[31]

Melnyk CW, Gabel A, Hardcastle TJ, Robinson S, Miyashima S, et al. 2018. Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration. Proceedings of the National Academy of Sciences of the United States of America 115:E2447−E2456

doi: 10.1073/pnas.1718263115
[32]

Miao L, Li Q, Sun T, Chai S, Wang C, et al. 2021. Sugars promote graft union development in the heterograft of cucumber onto pumpkin. Horticulture Research 8:146

doi: 10.1038/s41438-021-00580-5
[33]

Melnyk CW, Schuster C, Leyser O, Meyerowitz EM. 2015. A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Current Biology 25:1306−18

doi: 10.1016/j.cub.2015.03.032
[34]

Wulf KE, Reid JB, Foo E. 2019. Auxin transport and stem vascular reconnection - has our thinking become canalized? Annals of Botany 123:429−39

doi: 10.1093/aob/mcy180
[35]

Serivichyaswat PT, Bartusch K, Leso M, Musseau C, Iwase A, et al. 2022. High temperature perception in leaves promotes vascular regeneration and graft formation in distant tissues. Development 149:dev200079

doi: 10.1242/dev.200079
[36]

Marsch-Martínez N, Franken J, Gonzalez-Aguilera KL, de Folter S, Angenent G, et al. 2013. An efficient flat-surface collar-free grafting method for Arabidopsis thaliana seedlings. Plant Methods 9:14

doi: 10.1186/1746-4811-9-14
[37]

Kondhare KR, Patil NS, Banerjee AK. 2021. A historical overview of long-distance signalling in plants. Journal of Experimental Botany 72:4218−36

doi: 10.1093/jxb/erab048
[38]

Dong Y, Aref R, Forieri I, Schiel D, Leemhuis W, et al. 2022. The plant TOR kinase tunes autophagy and meristem activity for nutrient stress-induced developmental plasticity. The Plant Cell 34:3814−29

doi: 10.1093/plcell/koac201
[39]

Wang P, Zhao Y, Li Z, Hsu CC, Liu X, et al. 2018. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Molecular Cell 69:100−112.e6

doi: 10.1016/j.molcel.2017.12.002
[40]

Chen Q, Hu T, Li X, Song C, Zhu J, et al. 2022. Phosphorylation of SWEET sucrose transporters regulates plant root: shoot ratio under drought. Nature Plants 8:68−77

doi: 10.1038/s41477-021-01040-7
[41]

Bommer UA, Telerman A. 2020. Dysregulation of TCTP in biological processes and diseases. Cells 9:1632

doi: 10.3390/cells9071632
[42]

Toscano-Morales R, Xoconostle-Cázares B, Martínez-Navarro AC, Ruiz-Medrano R. 2016. AtTCTP2 mRNA and protein movement correlates with formation of adventitious roots in tobacco. Plant Signaling & Behavior 11:e1071003

doi: 10.1080/15592324.2015.1071003
[43]

Yang L, Perrera V, Saplaoura E, Apelt F, Bahin M, et al. 2019. m5C methylation guides systemic transport of messenger RNA over graft junctions in plants. Current Biology 29:2465−2476.e5

doi: 10.1016/j.cub.2019.06.042
[44]

Berkowitz O, Jost R, Pollmann S, Masle J. 2008. Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. The Plant Cell 20:3430−47

doi: 10.1105/tpc.108.061010
[45]

Liu Z, Wang C, Li X, Lu X, Liu M, et al. 2023. The role of shoot-derived RNAs transported to plant root in response to abiotic stresses. Plant Science 328:111570

doi: 10.1016/j.plantsci.2022.111570
[46]

Roustan V, Jain A, Teige M, Ebersberger I, Weckwerth W. 2016. An evolutionary perspective of AMPK–TOR signaling in the three domains of life. Journal of Experimental Botany 67:3897−907

doi: 10.1093/jxb/erw211
[47]

Brunkard JO. 2020. Exaptive evolution of target of rapamycin signaling in multicellular eukaryotes. Developmental Cell 54:142−55

doi: 10.1016/j.devcel.2020.06.022
[48]

Zhulyn O, Rosenblatt HD, Shokat L, Dai S, Kuzuoglu-Öztürk D, et al. 2023. Evolutionarily divergent mTOR remodels translatome for tissue regeneration. Nature 620:163−71

doi: 10.1038/s41586-023-06365-1
[49]

Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, et al. 2002. Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proceedings of the National Academy of Sciences of the United States of America 99:6422−27

doi: 10.1073/pnas.092141899
[50]

Xiong F, Dong P, Liu M, Xie G, Wang K, et al. 2016. Tomato FK506 Binding Protein 12KD (FKBP12) mediates the interaction between rapamycin and Target of Rapamycin (TOR). Frontiers in Plant Science 7:1746

doi: 10.3389/fpls.2016.01746
[51]

Terenzio M, Koley S, Samra N, Rishal I, Zhao Q, et al. 2018. Locally translated mTOR controls axonal local translation in nerve injury. Science 359:1416−21

doi: 10.1126/science.aan1053
[52]

Thieme CJ, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, et al. 2015. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nature Plants 1:15025

doi: 10.1038/nplants.2015.25
[53]

Li X, Lin S, Xiang C, Liu W, Zhang X, et al. 2023. CUCUME: an RNA methylation database integrating systemic mRNAs signals, GWAS and QTL genetic regulation and epigenetics in different tissues of Cucurbitaceae. Computational and Structural Biotechnology Journal 21:837−46

doi: 10.1016/j.csbj.2023.01.012
[54]

Xiong F, Tian J, Wei Z, Deng K, Li Y, et al. 2023. Suppression of the target of rapamycin kinase accelerates tomato fruit ripening through reprogramming the transcription profile and promoting ethylene biosynthesis. Journal of Experimental Botany 74:2603−19

doi: 10.1093/jxb/erad056
[55]

Choi I, Ahn CS, Lee DH, Baek SA, Jung JW, et al. 2022. Silencing of the target of rapamycin complex genes stimulates tomato fruit ripening. Molecules and Cells 45:660−72

doi: 10.14348/molcells.2022.2025
[56]

Zhang Y, Xing H, Wang H, Yu L, Yang Z, et al. 2022. SlMYC2 interacted with the SlTOR promoter and mediated JA signaling to regulate growth and fruit quality in tomato. Frontiers in Plant Science 13:1013445

doi: 10.3389/fpls.2022.1013445