[1]

The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796−815

doi: 10.1038/35048692
[2]

Chen J, Zhang C, Zhang J, Yu J. 1963. Studies on the chinese Mei-Hua iii.—experiments of acclimatizing Mei-Hua in Peking. Acta Horticulturae Sinica 4:395−450

[3]

Bao M, Chen J. 1994. Studies on the variation and distribution of Prunus mume Sieb. et Zucc. Acta Horticulturae Sinica 21:81−86

[4]

Chen J, Chen R. 2009. A new system for classifying China Mei cultivar groups, with special reference to developing superiorities of interspecific hybrid originated groups. Horticulturae Sinica 36:693−700

doi: 10.16420/j.issn.0513-353x.2009.05.011
[5]

Zhang Q. 1988. The interspecific cross experiments and breeding for hardiness in Mei Hua (Prunus mume Sieb. et Zucc.) (I) Studies on freezing-resistance of the lnterspecific hybrids and their parents. Journal of Beijing Forestry University 04:53−59

[6]

Zhang Q, Chen W, Sun L, Zhao F, Huang B, et al. 2012. The genome of Prunus mume. Nature Communications 3:1318

doi: 10.1038/ncomms2290
[7]

Sun L, Yang W, Zhang Q, Cheng T, Pan H, et al. 2013. Genome-wide characterization and linkage mapping of simple sequence repeats in Mei (Prunus mume Sieb. et Zucc.). PLoS ONE 8:e59562

doi: 10.1371/journal.pone.0059562
[8]

Zhang Y, Bao M. 1998. Advances in classification for cultivars of Prunus mume. Journal of Beijing Forestry University 20:94−98

[9]

Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, et al. 2010. The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics 42:833−39

doi: 10.1038/ng.654
[10]

Oosumi T, Ruiz-Rojas JJ, Veilleux RE, Dickerman A, Shulaev V. 2010. Implementing reverse genetics in Rosaceae: analysis of T-DNA flanking sequences of insertional mutant lines in the diploid strawberry, Fragaria vesca. Physiologia Plantarum 140:1−9

doi: 10.1111/j.1399-3054.2010.01378.x
[11]

Bao F, Ding A, Zhang T, Luo L, Wang J, et al. 2019. Expansion of PmBEAT genes in the Prunus mume genome induces characteristic floral scent production. Horticulture Research 6:24

doi: 10.1038/s41438-018-0104-4
[12]

Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, et al. 2011. Functional and expressional analyses PmDAM of genes associated with endodormancy in Japanese apricot. Plant Physiology 157:485−97

doi: 10.1104/pp.111.181982
[13]

El-kereamy A, Jayasankar S, Taheri A, Errampalli D, Paliyath G. 2009. Expression analysis of a plum pathogenesis related 10 (PR10) protein during brown rot infection. Plant Cell Reports 28:95−102

doi: 10.1007/s00299-008-0612-z
[14]

Jiang L. 2020. Physiological changes and gene expression pattern in response to low temperature stress in Prunus mume. Dissertations. Beijing Forestry University.

[15]

Wang X, Liu S, Zuo H, Zheng W, Zhang S, et al. 2021. Genomic basis of high-altitude adaptation in Tibetan Prunus fruit trees. Current Biology 31:3848−3860.E8

doi: 10.1016/j.cub.2021.06.062
[16]

Zheng T, Li P, Zhuo X, Liu W, Qiu L, et al. 2022. The chromosome-level genome provides insight into the molecular mechanism underlying the tortuous-branch phenotype of Prunus mume. New Phytologist 235:141−56

doi: 10.1111/nph.17894
[17]

Shi T, Luo WJ, Li H, Huang X, Ni Z, et al. 2020. Association between blooming time and climatic adaptation in Prunus mume. Ecology and Evolution 10:292−306

doi: 10.1002/ece3.5894
[18]

Zhang Q, Zhang H, Sun L, Fan G, Ye M, et al. 2018. The genetic architecture of floral traits in the woody plant Prunus mume. Nature Communications 9:1702

doi: 10.1038/s41467-018-04093-z
[19]

Ge D, Dong J, Guo L, Yan M, Zhao X, et al. 2020. The complete mitochondrial genome sequence of cultivated apple (Malus domestica cv. 'Yantai Fuji 8'). Mitochondrial DNA Part B 5:1317−18

doi: 10.1080/23802359.2020.1733447
[20]

Govindarajulu R, Parks M, Tennessen JA, Liston A, Ashman TL. 2015. Comparison of nuclear, plastid, and mitochondrial phylogenies and the origin of wild octoploid strawberry species. American Journal of Botany 102:544−54

doi: 10.3732/ajb.1500026
[21]

Numaguchi K, Akagi T, Kitamura Y, Ishikawa R, Ishii T. 2020. Interspecific introgression and natural selection in the evolution of Japanese apricot (Prunus mume). The Plant Journal 104:1551−67

doi: 10.1111/tpj.15020
[22]

Zhang Q, Hao R, Xu Z, Yang W, Wang J, et al. 2017. Isolation and functional characterization of a R2R3-MYB regulator of Prunus mume anthocyanin biosynthetic pathway. Plant Cell, Tissue and Organ Culture 131:417−29

doi: 10.1007/s11240-017-1294-4
[23]

Huang C. 2007. Preliminary construction of F1 mapping population and the frame molecular linkage map of mei flower. Thesis. Huazhong Agricultural University.

[24]

Sun L, Zhang Q, Xu Z, Yang W, Guo Y, et al. 2013. Genome-wide DNA polymorphisms in two cultivars of mei (Prunus mume sieb. et zucc.). BMC Genetics 14:98

doi: 10.1186/1471-2156-14-98
[25]

Sun L, Wang Y, Yan X, Cheng T, Ma K, et al. 2014. Genetic control of juvenile growth and botanical architecture in an ornamental woody plant, Prunus mume Sieb. et Zucc. as revealed by a high-density linkage map. BMC Genetics 15:S1

doi: 10.1186/1471-2156-15-S1-S1
[26]

Jiang L, Shi H, Sang M, Zheng C, Cao Y, et al. 2019. A computational model for inferring QTL control networks underlying developmental covariation. Frontiers in Plant Science 10:1557

doi: 10.3389/fpls.2019.01557
[27]

Li M, Sang M, Wen Z, Meng J, Cheng T, et al. 2022. Mapping floral genetic architecture in Prunus mume, an ornamental woody plant. Frontiers in Plant Science 13:828579

doi: 10.3389/fpls.2022.828579
[28]

Zhang J, Zhang Q, Cheng T, Yang W, Pan H, et al. 2015. High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunus mume Sieb.et Zucc). DNA Research 22:183−91

doi: 10.1093/dnares/dsv003
[29]

Dudareva N, Pichersky E. 2000. Biochemical and molecular genetic aspects of floral scents. Plant Physiology 122:627−33

doi: 10.1104/pp.122.3.627
[30]

Hoballah ME, Stuurman J, Turlings TCJ, Guerin PM, Connétable S, et al. 2005. The composition and timing of flower odour emission by wild Petunia axillaris coincide with the antennal perception and nocturnal activity of the pollinator Manduca sexta. Planta 222:141−50

doi: 10.1007/s00425-005-1506-8
[31]

Matsuda H, Morikawa T, Ishiwada T, Managi H, Kagawa M, et al. 2003. Medicinal flowers. VIII. Radical scavenging constituents from the flowers of Prunus mume: structure of prunose III. Chemical & Pharmaceutical Bulletin 51:440−43

doi: 10.1248/cpb.51.440
[32]

Zhang T, Bao F, Yang Y, Hu L, Ding A, et al. 2020. A comparative analysis of floral scent compounds in intraspecific cultivars of Prunus mume with different corolla colours. Molecules 25:145

doi: 10.3390/molecules25010145
[33]

Hao R, Du D, Wang T, Yang W, Wang J, et al. 2014. A comparative analysis of characteristic floral scent compounds in Prunus mume and related species. Bioscience, Biotechnology, and Biochemistry 78:1640−47

doi: 10.1080/09168451.2014.936346
[34]

Zhang T, Huo T, Ding A, Hao R, Wang J, et al. 2019. Genome-wide identification, characterization, expression and enzyme activity analysis of coniferyl alcohol acetyltransferase genes involved in eugenol biosynthesis in Prunus mume. PLoS ONE 14:e0223974

doi: 10.1371/journal.pone.0223974
[35]

Zhao Y, Pan H, Zhang Q, Pan C, Cai M. 2010. Dynamics of fragrant compounds from Prunus mume flowers. Journal of Beijing Forestry University 32:201−06

doi: 10.13332/j.1000-1522.2010.04.018
[36]

Hao R, Zhang Q, Yang W, Wang J, Cheng T, et al. 2014. Emitted and endogenous floral scent compounds of Prunus mume and hybrids. Biochemical Systematics and Ecology 54:23−30

doi: 10.1016/j.bse.2013.12.007
[37]

Zhang X, Liu C. 2015. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Molecular Plant 8:17−27

doi: 10.1016/j.molp.2014.11.001
[38]

Zhao K, Yang W, Zhou Y, Zhang J, Li Y, et al. 2017. Comparative transcriptome reveals benzenoid biosynthesis regulation as inducer of floral scent in the woody plant Prunus mume. Frontiers in Plant Science 8:319

doi: 10.3389/fpls.2017.00319
[39]

Jiang L, Zhang M, Ma K. 2020. Whole-genome DNA methylation associated with differentially expressed genes regulated anthocyanin biosynthesis within flower color chimera of ornamental tree Prunus mume. Forests 11:90

doi: 10.3390/f11010090
[40]

Yuan X, Ma K, Zhang M, Wang J, Zhang Q. 2021. Integration of transcriptome and methylome analyses provides insight into the pathway of floral scent biosynthesis in Prunus mume. Frontiers in Genetics 12:779557

doi: 10.3389/fgene.2021.779557
[41]

Ruijie H, Chen Q, Jun C. 2022. Identification and verification of BAHDs related to benzyl acetate synthesis in Prunus mume. Russian Journal of Plant Physiology 69:145

doi: 10.1134/S1021443722601872
[42]

Bao F, Zhang T, Ding A, Ding A, Yang W, et al. 2020. Metabolic, enzymatic activity, and transcriptomic analysis reveals the mechanism underlying the lack of characteristic floral scent in apricot Mei varieties. Frontiers in Plant Science 11:574982

doi: 10.3389/fpls.2020.574982
[43]

An Y. 2016. Isolation and characterization of eugenol synthase genes in Pruns mume 'Sanlunyudie'. Thesis. Beijing Forestry University.

[44]

Hao R, Yang S, Zhang Z, Zhang Y, Chang J, et al. 2021. Identification and specific expression patterns in flower organs of ABCG genes related to floral scent from Prunus mume. Scientia Horticulturae 288:110218

doi: 10.1016/j.scienta.2021.110218
[45]

Cheng W, Zhang M, Cheng T, Wang J, Zhang Q. 2022. Genome-wide identification of Aux/IAA gene family and their expression analysis in Prunus mume. Frontiers in Genetics 13:1013822

doi: 10.3389/fgene.2022.1013822
[46]

Zhang T, Bao F, Ding A, Yang Y, Cheng T, et al. 2022. Comprehensive analysis of endogenous volatile compounds, transcriptome, and enzyme activity reveals PmCAD1 involved in cinnamyl alcohol synthesis in Prunus mume. Frontiers in Plant Science 13:820742

doi: 10.3389/fpls.2022.820742
[47]

Zhao C, Guo W, Chen J. 2004. Research advances in the flower color of Prunus mume. Journal of Beijing Forestry University123−27

[48]

Zhao C. 2005. Studies on the temporal and spatial variations of the flower color, the molecular structures of the anthocyanins and the cloning of the F3′H of several cultivars of Prunus mume. Dissertations. Nanjing Agricultural University.

[49]

Petroni K, Tonelli C. 2011. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science 181:219−29

doi: 10.1016/j.plantsci.2011.05.009
[50]

Liu W, Zheng T, Yang Y, Li , Qiu L, et al. 2021. Meta-analysis of the effect of overexpression of MYB transcription factors on the regulatory mechanisms of anthocyanin biosynthesis. Frontiers in Plant Science 12:781343

doi: 10.3389/fpls.2021.781343
[51]

Liu B. 2019. Identification and analysis on expression of the WD40 gene family in Prunus mume. Thesis. Anhui Agricultural University.

[52]

Liu Y, Hou H, Jiang X, Wang P, Dai X, et al. 2018. A WD40 repeat protein from camellia sinensis regulates anthocyanin and proanthocyanidin accumulation through the formation of MYB-bHLH-WD40 ternary complexes. International Journal of Molecular Sciences 19:1686

doi: 10.3390/ijms19061686
[53]

Zhao C, Yang Q, Chen J. 2006. Cloning of the segment of flavonoid 3′-hydroxylase gene from the gDNA of Prunus mume by degenerate PCR. Guihaia608−16

[54]

Qiu L, Zheng T, Liu W, Zhuo X, Li P, et al. 2022. Integration of transcriptome and metabolome reveals the formation mechanism of red stem in Prunus mume. Frontiers in Plant Science 13:884883

doi: 10.3389/fpls.2022.884883
[55]

Lu J, Yang W, Zhang Q. 2015. Genome-wide identification and characterization of the DELLA subfamily in Prunus mume. Journal of the American Society for Horticultural Science 140:223−32

doi: 10.21273/JASHS.140.3.223
[56]

Wang T, Lu J, Xu Z, Yang W, Wang J, et al. 2014. Selection of suitable reference genes for miRNA expression normalization by qRT-PCR during flower development and different genotypes of Prunus mume. Scientia Horticulturae 169:130−37

doi: 10.1016/j.scienta.2014.02.006
[57]

Wang T, Pan H, Wang J, Yang W, Cheng T, et al. 2014. Identification and profiling of novel and conserved microRNAs during the flower opening process in Prunus mume via deep sequencing. Molecular Genetics and Genomics 289:169−83

doi: 10.1007/s00438-013-0800-6
[58]

Xu Z, Zhang Q, Sun L, Du D, Cheng T, et al. 2014. Genome-wide identification, characterisation and expression analysis of the MADS-box gene family in Prunus mume. Molecular Genetics and Genomics 289:903−20

doi: 10.1007/s00438-014-0863-z
[59]

Hou J, Gao Z, Zhang Z, Chen S, Ando T, et al. 2011. Isolation and characterization of an AGAMOUS homologue PmAG from the Japanese apricot (Prunus mume Sieb. et Zucc.). Plant Molecular Biology Reporter 29:473−80

doi: 10.1007/s11105-010-0248-3
[60]

Xu Z, Sun L, Zhou Y, Yang W, Cheng T, et al. 2015. Identification and expression analysis of the SQUAMOSA promoter-binding protein (SBP)-box gene family in Prunus mume. Molecular Genetics and Genomics 290:1701−15

doi: 10.1007/s00438-015-1029-3
[61]

Ahmad S, Li Y, Yang Y, Zhou Y, Zhao K, et al. 2019. Isolation, functional characterization and evolutionary study of LFY1 gene in Prunus mume. Plant Cell, Tissue and Organ Culture (PCTOC) 136:523−36

doi: 10.1007/s11240-018-01534-x
[62]

Li Y, Xu Z, Yang W, Cheng T, Wang J, et al. 2016. Isolation and Functional Characterization of SOC1-like Genes in Prunus mume. Journal of the American Society for Horticultural Science 141:315−26

doi: 10.21273/JASHS.141.4.315
[63]

Li Y, Zhou Y, Yang W, Cheng T, Wang J, et al. 2017. Isolation and functional characterization of SVP-like genes in Prunus mume. Scientia Horticulturae 215:91−101

doi: 10.1016/j.scienta.2016.12.013
[64]

Yong X, Zheng T, Han Y, Cong T, Li P, et al. 2022. The miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN (PmSBP) transcription factor regulates the flowering time by binding to the promoter of SUPPRESSOR OF OVEREXPRESSION OF CO1 (PmSOC1) in Prunus mume. International Journal of Molecular Sciences 23:11976

doi: 10.3390/ijms231911976
[65]

Zhou Y, Xu Z, Yong X, Ahmad S, Yang W, et al. 2017. SEP-class genes in Prunus mume and their likely role in floral organ development. BMC Plant Biology 17:10

doi: 10.1186/s12870-016-0954-6
[66]

Zhu H, Shi Y, Zhang J, Bao M, Zhang J. 2022. Candidate genes screening based on phenotypic observation and transcriptome analysis for double flower of Prunus mume. BMC Plant Biology 22:499

doi: 10.1186/s12870-022-03895-0
[67]

Shi Y, Zhu H, Zhang J, Bao M, Zhang J. 2023. Development and validation of molecular markers for double flower of Prunus mume. Scientia Horticulturae 310:111761

doi: 10.1016/j.scienta.2022.111761
[68]

Mao T, Zhu H, Liu Y, Bao M, Zhang J, et al. 2020. Weeping candidate genes screened using comparative transcriptomic analysis of weeping and upright progeny in an F1 population of Prunus mume. Physiologia Plantarum 170:318−34

doi: 10.1111/ppl.13179
[69]

Busov VB, Johannes E, Whetten RW, Sederoff RR, Spiker SL, et al. 2004. An auxin-inducible gene from loblolly pine (Pinus taeda L.) is differentially expressed in mature and juvenile-phase shoots and encodes a putative transmembrane protein. Planta 218:916−27

doi: 10.1007/s00425-003-1175-4
[70]

Li L, Zhang Y, Zheng T, Zhuo X, Li P, et al. 2021. Comparative gene expression analysis reveals that multiple mechanisms regulate the weeping trait in Prunus mume. Scientific Reports 11:2675

doi: 10.1038/s41598-021-81892-3
[71]

Hou D. 2020. Isolating and expression analysis of candidate gene PmWND1 of weeping trait in Prunus mume. Thesis. Beijing Forestry University.

[72]

Liu Y, Wu Y, Shi Y, Mao T, Bao M, et al. 2022. Preliminary study on the relationship between promoter sequence difference of PmTAC1 and weeping trait of Prunus mume. Acta Horticulturae Sinica 49:1327−38

doi: 10.16420/j.issn.0513-353x.2021-0468
[73]

Wu Y, Wu S, Wang X, Mao T, Bao M, et al. 2022. Genome-wide identification and characterization of the bHLH gene family in an ornamental woody plant Prunus mume. Horticultural Plant Journal 8:531−44

doi: 10.1016/j.hpj.2022.01.004
[74]

Zheng T, Li L, Wang J, Cheng T, Zhang Q. 2022. Cloning and expression pattern analysis of HD-Zip III transcription factor (PmHB5) in Prunus mume. Journal of Hebei Agricultural University 45:77−85,131

doi: 10.13320/j.cnki.jauh.2022.0080
[75]

Zhang Y. 2020. Key genes selection associated with weeping trait of Mei. Thesis. Beijing Forestry University.

[76]

Weiser CJ. 1970. Cold resistance and injury in woody plants. Science 169:1269−78

doi: 10.1126/science.169.3952.1269
[77]

Zhuo X, Zheng T, Zhang Z, Li S, Zhang Y, et al. 2021. Bulked segregant RNA sequencing (BSR-seq) identifies a novel allele associated with weeping traits in Prunus mume. Frontiers of Agricultural Science and Engineering 8:196−214

doi: 10.15302/J-FASE-2020379
[78]

Zhuo X, Zheng T, Li S, Zhang Z, Zhang M, et al. 2021. Identification of the PmWEEP locus controlling weeping traits in Prunus mume through an integrated genome-wide association study and quantitative trait locus mapping. Horticulture Research 8:131

doi: 10.1038/s41438-021-00573-4
[79]

Chen J, Zhang Q, Li Z, Chen R. 2003. Research and promotion issues in the breeding of cold-tolerant cultivars of Mei. Journal of Beijing Forestry University1−5

[80]

Zhang Q. 1985. A comparative study on differences in cold hardiness in some of Mei flower cultivars (Prunus mume Sieb. et. Zucc). Journal of Beijing Forestry University47−56

[81]

Gillespie LM, Volaire FA. 2017. Are winter and summer dormancy symmetrical seasonal adaptive strategies? The case of temperate herbaceous perennials Annals of Botany 119:311−23

doi: 10.1093/aob/mcw264
[82]

Zhao K, Zhou Y, Ahmad S, Yong X, Xie X, et al. 2018. PmCBFs synthetically affect PmDAM6 by alternative promoter binding and protein complexes towards the dormancy of bud for Prunus mume. Scientific Reports 8:4527

doi: 10.1038/s41598-018-22537-w
[83]

Li P, Zheng T, Zhang Z, Liu W, Qiu L, et al. 2021. Integrative identification of crucial genes associated with plant hormone-mediated bud dormancy in Prunus mume. Frontiers in Genetics 12:698598

doi: 10.3389/fgene.2021.698598
[84]

Yong X, Zhou Y, Zheng T, Zhao K, Ahmad S, et al. 2021. PmSOC1s and PmDAMs participate in flower bud dormancy of Prunus mume by forming protein complexes and responding to ABA. European Journal of Horticultural Science 86:480−92

doi: 10.17660/eJHS.2021/86.5.4
[85]

Cao N. 2014. Molecular cloning and functional analysis of PmICE1 gene from Prunus mume. Thesis. Beijing Forestry University.

[86]

Bao F, Du D, An Y, Yang W, Wang J, et al. 2017. Overexpression of Prunus mume dehydrin genes in tobacco enhances tolerance to cold and drought. Frontiers in Plant Science 8:151

doi: 10.3389/fpls.2017.00151
[87]

Bao F, Ding A, Cheng T, Wang J, Zhang Q. 2019. Genome-wide analysis of members of the WRKY gene family and their cold stress response in Prunus mume. Genes 10:911

doi: 10.3390/genes10110911
[88]

Ding Y, Shi Y, Yang S. 2019. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytologist 222:1690−704

doi: 10.1111/nph.15696
[89]

Shi Y, Ding Y, Yang S. 2018. Molecular reculation of CBF sicnalinc in colc acclimation. Trends in Plant Science 23:623−37

doi: 10.1016/j.tplants.2018.04.002
[90]

Peng T, Guo C, Yang J, Xu M, Zuo J, et al. 2016. Overexpression of a Mei (Prunus mume) CBF gene confers tolerance to freezing and oxidative stress in Arabidopsis. Plant Cell, Tissue and Organ Culture (PCTOC) 126:373−85

doi: 10.1007/s11240-016-1004-7
[91]

Fursova OV, Pogorelko GV, Tarasov VA. 2009. Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene 429:98−103

doi: 10.1016/j.gene.2008.10.016
[92]

Cao N, Zhang Q, Hao R, Xu Z, Wang T, et al. 2014. Molecular cloning and expression analysis of cold-resistant transcription factor PmICE1 from Prunus mume. Journal of Northeast Forestry University 42:21−25

[93]

Ding A, Ding A, Li P, Wang J, Cheng T, et al. 2021. Genome-wide identification and low-temperature expression analysis of bHLH genes in Prunus mume. Frontiers in Genetics 12:762135

doi: 10.3389/fgene.2021.762135
[94]

Shafi KM, Sowdhamini R. 2022. Computational analysis of potential candidate genes involved in the cold stress response of ten Rosaceae members. BMC Genomics 23:516

doi: 10.1186/s12864-022-08751-x
[95]

Feng L. 2020. Functional analysis of ZINC finger protein genes PmZAT12 and PmBBX32 in Prunus mume under low temperature stress. Thesis. Huazhong Agricultural University.

[96]

Ding A. 2022. Comparison analysis of cold tolerance and key differential genes function of Prunus mume. Dissertations. Beijing Forestry University.

[97]

Li P, Zheng T, Li L, Liu W, Qiu L, et al. 2023. Integration of chromatin accessibility and gene expression reveals new regulators of cold hardening to enhance freezing tolerance in Prunus mume. Journal of Experimental Botany 74:2173−87

doi: 10.1093/jxb/erad027
[98]

Meng J, Wen Z, Li M, Cheng T, Zhang Q, et al. 2022. HDACs gene family analysis of eight rosaceae genomes reveals the genomic marker of cold stress in Prunus mume. International Journal of Molecular Sciences 23:5957

doi: 10.3390/ijms23115957
[99]

Li P, Zheng T, Li L, Wang J, Cheng T, et al. 2022. Genome-wide investigation of the bZIP transcription factor gene family in Prunus mume: classification, evolution, expression profile and low-temperature stress responses. Horticultural Plant Journal 8:230−42

doi: 10.1016/j.hpj.2021.01.009
[100]

Zhuo X, Zheng T, Zhang Z, Zhang Y, Jiang L, et al. 2018. Genome-wide analysis of the nac transcription factor gene family reveals differential expression patterns and cold-stress responses in the woody plant Prunus mume. Genes 9:494

doi: 10.3390/genes9100494
[101]

Wen Z, Li M, Meng J, Li P, Cheng T, et al. 2022. Genome-wide identification of the SWEET gene family mediating the cold stress response in Prunus mume. PeerJ 10:e13273

doi: 10.7717/peerj.13273
[102]

Wang Y, Dong B, Wang N, Zheng Z, Yang L, et al. 2023. A WRKY transcription factor PmWRKY57 from Prunus mume improves cold tolerance in Arabidopsis thaliana. Molecular Biotechnology 65:1359−68

doi: 10.1007/s12033-022-00645-3
[103]

Li P, Zheng T, Li L, Zhuo X, Jing L, et al. 2019. Identification and comparative analysis of the CIPK gene family and characterization of the cold stress response in the woody plant Prunus mume. PeerJ 7:e6847

doi: 10.7717/peerj.6847
[104]

Wen Z, Li M, Meng J, Miao R, Liu X, et al. 2023. Genome-wide identification of the MAPK and MAPKK gene families in response to cold stress in Prunus mume. International Journal of Molecular Sciences 24:8829

doi: 10.3390/ijms24108829
[105]

Miao R, Li M, Wen Z, Meng J, Liu X, et al. 2023. Whole-genome identification of regulatory function of CDPK gene families in cold stress response for Prunus mume and Prunus mume var. Tortuosa. Plants 12:2548

doi: 10.3390/plants12132548
[106]

Yang L, Li P, Qiu L, Ahmad S, Wang J, et al. 2022. Identification and comparative analysis of the Rosaceae RCI2 gene family and characterization of the cold stress response in Prunus mume. Horticulturae 8:997

doi: 10.3390/horticulturae8110997
[107]

Zuo J. 2018. Cloning and functional analysis of galactinol and raffinose synthase genes in Prunus mume. Thesis. Huazhong Agricultural University.

[108]

Chen K, Li X, Guo X, Yang L, Qiu L, et al. 2023. enome-wide identification and expression profiling of the NCED gene family in cold stress response of Prunus mume Siebold & Zucc. Horticulturae 9:839

doi: 10.3390/horticulturae9070839
[109]

Ding A, Bao F, Ding A, Zhang Q. 2022. Cold hardiness of Prunus mume 'Xiang Ruibai' and its parents based on biological indexes and physical parameters. Forests 13:2163

doi: 10.3390/f13122163
[110]

Zeng B, Li W, Huang G, Zhang L, Tang G, et al. 2020. Research progress on abiotic stresses for Prunus mume Sieb. et. Zucc. Hunan Agricultural Sciences 11:96−98,103

doi: 10.16498/j.cnki.hnnykx.2020.011.025
[111]

Sun M, Zu C, Xu J. 2004. Research progress on the impact of drought on plant. Journal of Anhui Agricultural Sciences 32:365−67

[112]

Yang Y. 2021. Difference analysis of drought tolerance in cultivars of Prunus mume and function study of genes in melatonin biosynthesis. Dissertations. Beijing Forestry University.

[113]

Liu Y, Yang J, Duan M, Li Q, Zhang Y, et al. 2017. Research on Prunus mume response to high pH. Northern Horticulture99−102

[114]

Ding A, Bao F, Cheng W, Cheng T, Zhang Q. 2023. Phylogeny of PmCCD gene family and expression analysis of flower coloration and stress response in Prunus mume. International Journal of Molecular Sciences 24:13950

doi: 10.3390/ijms241813950
[115]

Yang Y, Ma K, Zhang T, Li L, Wang J, et al. 2020. Characteristics and expression analyses of trehalose-6-phosphate synthase family in Prunus mume reveal genes involved in trehalose biosynthesis and drought response. Biomolecules 10:1358

doi: 10.3390/biom10101358
[116]

Yan ST. 2017. Bioinformatics and expression analysis of the basic leucine zipper gene family in plum. Thesis. Anhui Agricultural University.

[117]

Wang X, Song Z, Ti Y, Liu Y, Li Q. 2022. Physiological response and transcriptome analysis of Prunus mume to early salt stress. Journal of Plant Biochemistry and Biotechnology 31:330−42

doi: 10.1007/s13562-021-00680-2
[118]

Wang N, Dong B, Yang LY, Zhao H. 2021. Cloning and expression analysis under adversity stress of 2 PmWRKY2 in Prunus mume. Journal of Zhejiang A& F University 38:812−19

doi: 10.11833/j.issn.2095-0756.20200706
[119]

Feng L, Chen M, Xu Y, Yan X, Bao M, et al. 2017. Cloning and expression analysis of PmZAT12 from Prunus mume. Journal of Beijing Forestry University 39:20−25

doi: 10.13332/j.1000-1522.20170471
[120]

Yang Q, Yuan C, Cong T, Wang J, Zhang Q. 2022. Genome-wide identification of three-amino-acid-loop-extension gene family and their expression profile under hormone and abiotic stress treatments during stem development of Prunus mume. Frontiers in Plant Science 13:1006360

doi: 10.3389/fpls.2022.1006360
[121]

Yang J, Wan X, Guo C, Zhang J, Bao M. 2016. Identification and expression analysis of nuclear factor Y families in Prunus mume under different abiotic stresses. Biologia Plantarum 60:419−26

doi: 10.1007/s10535-016-0624-4
[122]

Zhao L, Yang J, Yu S, He L, Wang J, et al. 2019. Effects grafting on the photosynthetic physiological characteristic and Chlorophyll fluorescence parameters of Prunus mume under salt stress. Journal of Northwest Forestry University 34:43−48

doi: 10.3969/j.issn.1001-7461.2019.06.07
[123]

Wan X, Yang J, Li X, Zhou Q, Guo C, et al. 2016. Over-expression of PmHSP17.9 in transgenic Arabidopsis thaliana confers thermotolerance. Plant Molecular Biology Reporter 34:899−908

doi: 10.1007/s11105-016-0974-2
[124]

Zhang Q. 1987. The interspecific crossing of Mei flower and cold hardiness breeding. Journal of Beijing Forestry University69−79

[125]

Yang P. 2016. Studies on optimization of regeneration from mature cotyledons of Prunus mume and genetic transformation of PmMYBs genes. Thesis. Huazhong Agricultural university.

[126]

Gao M, Kawabe M, Tsukamoto T, Hanada H, Tao R. 2010. Somatic embryogenesis and Agrobacterium-mediated transformation of Japanese apricot (Prunus mume) using immature cotyledons. Scientia Horticulturae 124:360−67

doi: 10.1016/j.scienta.2010.01.021
[127]

Liu Z, Liu J, Zhu Y, Yang Y, Chen L, et al. 2022. Research progress on the response mechanism of woody plants to low temperature. Journal of Northwest Forestry University 37:157−63

doi: 10.3969/j.issn.1001-7461.2022.02.21
[128]

Enfissi EMA, Drapal M, Perez-Fons L, Nogueira M, Berry HM, et al. 2021. New plant breeding techniques and their regulatory implications: an opportunity to advance metabolomics approaches. Journal of Plant Physiology 258–259:153378

doi: 10.1016/j.jplph.2021.153378