[1] |
Li Y, Smith T, Svetlana P, Yang J, Jin J, et al. 2014. Paleobiogeography of the lotus plant (Nelumbonaceae: Nelumbo) and its bearing on the paleoclimatic changes. Palaeogeography, Palaeoclimatology, Palaeoecology 399:284−93 doi: 10.1016/j.palaeo.2014.01.022 |
[2] |
Zheng P, Sun H, Liu J, Lin J, Zhang X, et al. 2022. Comparative analyses of American and Asian lotus genomes reveal insights into petal color, carpel thermogenesis and domestication. The Plant Journal 110:1498−515 doi: 10.1111/tpj.15753 |
[3] |
Lin Z, Zhang C, Cao D, Damaris RN, Yang P. 2019. The latest studies on lotus (Nelumbo nucifera)-an emerging horticultural model plant. International Journal of Molecular Sciences 20:3680 doi: 10.3390/ijms20153680 |
[4] |
Shen-Miller J. 2002. Sacred lotus, the long-living fruits of China Antique. Seed Science Research 12:131−43 doi: 10.1079/ssr2002112 |
[5] |
Qi H, Yu F, Deng J, Yang P. 2022. Studies on lotus genomics and the contribution to its breeding. International Journal of Molecular Sciences 23:7270 doi: 10.3390/ijms23137270 |
[6] |
Yang M, Zhu L, Pan C, Xu L, Liu Y, et al. 2015. Transcriptomic analysis of the regulation of rhizome formation in temperate and tropical lotus (Nelumbo nucifera). Scientific Reports 5:13059 doi: 10.1038/srep13059 |
[7] |
Wang Z, Li Y, Ma D, Zeng M, Wang Z, et al. 2023. Alkaloids from lotus (Nelumbo nucifera): recent advances in biosynthesis, pharmacokinetics, bioactivity, safety, and industrial applications. Critical Reviews in Food Science and Nutrition 63:4867−900 doi: 10.1080/10408398.2021.2009436 |
[8] |
Chen G, Zhu M, Guo M. 2019. Research advances in traditional and modern use of Nelumbo nucifera: phytochemicals, health promoting activities and beyond. Critical Reviews in Food Science and Nutrition 59:S189−S209 doi: 10.1080/10408398.2018.1553846 |
[9] |
Mukherjee PK, Mukherjee D, Maji AK, Rai S, Heinrich M. 2009. The sacred lotus (Nelumbo nucifera) – phytochemical and therapeutic profile. Journal of Pharmacy and Pharmacology 61:407−22 doi: 10.1211/jpp.61.04.0001 |
[10] |
Itoh A, Saitoh T, Tani K, Uchigaki M, Sugimoto Y, et al. 2011. Bisbenzylisoquinoline alkaloids from Nelumbo nucifera. Chemical & Pharmaceutical Bulletin 59:947−51 doi: 10.1248/cpb.59.947 |
[11] |
Deng X, Zhu L, Fang T, Vimolmangkang S, Yang D, et al. 2016. Analysis of isoquinoline alkaloid composition and wound-induced variation in Nelumbo using HPLC-MS/MS. Journal of Agricultural and Food Chemistry 64:1130−36 doi: 10.1021/acs.jafc.5b06099 |
[12] |
Pyne ME, Gold ND, Martin VJJ. 2023. Pathway elucidation and microbial synthesis of proaporphine and bis-benzylisoquinoline alkaloids from sacred lotus (Nelumbo nucifera). Metabolic Engineering 77:162−73 doi: 10.1016/j.ymben.2023.03.010 |
[13] |
Liscombe DK, Facchini PJ. 2008. Evolutionary and cellular webs in benzylisoquinoline alkaloid biosynthesis. Current Opinion in Biotechnology 19:173−80 doi: 10.1016/j.copbio.2008.02.012 |
[14] |
Khan AY, Suresh Kumar G. 2015. Natural isoquinoline alkaloids: binding aspects to functional proteins, serum albumins, hemoglobin, and lysozyme. Biophysical Review 7:407−20 doi: 10.1007/s12551-015-0183-5 |
[15] |
Facchini PJ. 2001. Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annual Review of Plant Physiology and Plant Molecular Biology 52:29−66 doi: 10.1146/annurev.arplant.52.1.29 |
[16] |
Kunitomo J, Yoshikaw Y, Tanaka S, Imori Y, Isoi K, et al. 1973. Alkaloids of Nelumbo nucifera. Phytochemistry 12:699−701 doi: 10.1016/S0031-9422(00)84467-2 |
[17] |
Sharma BR, Gautam LNS, Adhikari D, Karki R. 2017. A comprehensive review on chemical profiling of Nelumbo Nucifera: potential for drug development. Phytotherapy Research 31:3−26 doi: 10.1002/ptr.5732 |
[18] |
Menéndez-Perdomo IM, Facchini PJ. 2018. Benzylisoquinoline alkaloids biosynthesis in sacred lotus. Molecules 23:2899 doi: 10.3390/molecules23112899 |
[19] |
Nakamura S, Nakashima S, Tanabe G, Oda Y, Yokota N, et al. 2013. Alkaloid constituents from flower buds and leaves of sacred lotus (Nelumbo nucifera, Nymphaeaceae) with melanogenesis inhibitory activity in B16 melanoma cells. Bioorganic & Medicinal Chemistry 21:779−87 doi: 10.1016/j.bmc.2012.11.038 |
[20] |
Do TCMV, Nguyen TD, Tran H, Stuppner H, Ganzera M. 2013. Analysis of alkaloids in Lotus (Nelumbo nucifera Gaertn.) leaves by non-aqueous capillary electrophoresis using ultraviolet and mass spectrometric detection. Journal of Chromatography 1302:174−80 doi: 10.1016/j.chroma.2013.06.002 |
[21] |
Liu C, Tsai W, Shen C, Lin Y, Liao J, et al. 2006. Inhibition of (S)-armepavine from Nelumbo nucifera on autoimmune disease of MRL/MpJ-lpr/lpr mice. European Journal of Pharmacology 531:270−79 doi: 10.1016/j.ejphar.2005.11.062 |
[22] |
Deng X, Zhao L, Fang T, Xiong Y, Ogutu C, et al. 2018. Investigation of benzylisoquinoline alkaloid biosynthetic pathway and its transcriptional regulation in lotus. Horticulture Research 5:29 doi: 10.1038/s41438-018-0035-0 |
[23] |
Chen S, Zhang H, Liu Y, Fang J, Li S. 2013. Determination of lotus leaf alkaloids by solid phase extraction combined with high performance liquid chromatography with diode array and tandem mass spectrometry detection. Analytical Letters 46:2846−59 doi: 10.1080/00032719.2013.816960 |
[24] |
Sun H, Song H, Deng X, Liu J, Yang D, et al. 2022. Transcriptome-wide characterization of alkaloids and chlorophyll biosynthesis in lotus plumule. Frontiers in Plant Science 13:885503 doi: 10.3389/fpls.2022.885503 |
[25] |
Furukawa H. 1966. Studies on the alkaloids of Nelumbo nucifera Gaertn. NMR spectra of liensinine type alkaloids. Yakugaku Zasshi 86:883−86 doi: 10.1248/yakushi1947.86.10_883 |
[26] |
Kashiwada Y, Aoshima A, Ikeshiro Y, Chen Y, Furukawa H, et al. 2005. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids. Bioorganic & Medicinal Chemistry 13:443−48 doi: 10.1016/j.bmc.2004.10.020 |
[27] |
Zelenski SG. 1977. Alkaloids of Nelumbo lutea (Willd.) pers. (Nymphaeaceae). Journal of Pharmaceutical Sciences 66:1627−28 doi: 10.1002/jps.2600661132 |
[28] |
Chen J, Gao K, Liu T, Zhao H, Wang J, et al. 2013. Aporphine alkaloids: a kind of alkaloids' extract source, chemical constitution and pharmacological actions in different botany: a review. Asian Journal of Chemistry 25:10015−27 doi: 10.14233/ajchem.2013.15890 |
[29] |
Yang M, Zhu L, Li L, Li J, Xu L, et al. 2017. Digital gene expression analysis provides insight into the transcript profile of the genes involved in aporphine alkaloid biosynthesis in lotus (Nelumbo nucifera). Frontiers in Plant Science 8:80 doi: 10.3389/fpls.2017.00080 |
[30] |
Tian W, Zhi H, Yang C, Wang L, Long J, et al. 2018. Chemical composition of alkaloids of Plumula nelumbinis and their antioxidant activity from different habitats in China. Industrial Crops and Products 125:537−48 doi: 10.1016/j.indcrop.2018.09.045 |
[31] |
Zhou M, Jiang M, Ying X, Cui Q, Han Y, et al. 2013. Identification and comparison of anti-inflammatory ingredients from different organs of Lotus nelumbo by UPLC/Q-TOF and PCA coupled with a NF-κB reporter gene assay. PLoS ONE 8:e81971 doi: 10.1371/journal.pone.0081971 |
[32] |
Chen S, Guo W, Qi X, Zhou J, Liu Z, et al. 2019. Natural alkaloids from lotus plumule ameliorate lipopolysaccharide-induced depression-like behavior: integrating network pharmacology and molecular mechanism evaluation. Food & Function 10:6062−73 doi: 10.1039/c9fo01092k |
[33] |
Kato E, Inagaki Y, Kawabata J. 2015. Higenamine 4′-O-β-d-glucoside in the lotus plumule induces glucose uptake of L6 cells through β2-adrenergic receptor. Bioorganic & Medicinal Chemistry 23:3317−21 doi: 10.1016/j.bmc.2015.04.054 |
[34] |
Tomita M, Furukawa H. 1962. On the alkaloids of Nelumbo nucifera Gaertn. V. Alkaloids of "Ohga-hasu". Yakugaku Zasshi 82:1458−60 |
[35] |
Fang Y, Li Q, Shao Q, Wang B, Wei Y. 2017. A general ionic liquid pH-zone-refining countercurrent chromatography method for separation of alkaloids from Nelumbo nucifera Gaertn. Journal of Chromatography A 1507:63−71 doi: 10.1016/j.chroma.2017.05.048 |
[36] |
Grienke U, Mair CE, Saxena P, Baburin I, Scheel O, et al. 2015. Human ether-à-go-go related gene (hERG) channel blocking aporphine alkaloids from lotus leaves and their quantitative analysis in dietary weight loss supplements. Journal of Agriculture and Food Chemistry 63:5634−39 doi: 10.1021/acs.jafc.5b01901 |
[37] |
Shoji N, Umeyama A, Saito N, Luchi A, Takemoto T, et al. 1987. Asimilobine and lirinidine, serotonergic receptor antagonists, from Nelumbo nucifera. Journal of Natural Products 50:773−74 doi: 10.1021/np50052a044 |
[38] |
Liu C, Kao C, Wu H, Li W, Huang C, et al. 2014. Antioxidant and anticancer aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn. cv. Rosa-plena. Molecules 19:17829−38 doi: 10.3390/molecules191117829 |
[39] |
Liu S, Lu T, Su C, Lay I, Lin H, et al. 2014. Lotus leaf (Nelumbo nucifera) and its active constituents prevent inflammatory responses in macrophages via JNK/NF-κB signaling pathway. The American Journal of Chinese Medicine 42:869−89 doi: 10.1142/S0192415X14500554 |
[40] |
Li S, Wu J, Chen L, Du H, Xu Y, et al. 2014. Biogenesis of C-glycosyl flavones and profiling of flavonoid glycosides in lotus (Nelumbo nucifera). PLoS ONE 9:e108860 doi: 10.1371/journal.pone.0108860 |
[41] |
Ye L, He X, Kong L, Liao Y, Pan R, et al. 2014. Identification and characterization of potent CYP2D6 inhibitors in lotus leaves. Journal of Ethnopharmacology 153:190−96 doi: 10.1016/j.jep.2014.02.014 |
[42] |
Chang C, Ou T, Yang M, Huang C, Wang C. 2016. Nelumbo nucifera Gaertn leaves extract inhibits the angiogenesis and metastasis of breast cancer cells by downregulation connective tissue growth factor (CTGF) mediated PI3K/AKT/ERK signaling. Journal of Ethnopharmacology 188:111−22 doi: 10.1016/j.jep.2016.05.012 |
[43] |
Wei F, Gou X, Xu X, Wang S, Bao T. 2021. Sensitive quantification of liensinine alkaloid using a HPLC-MS/MS method and its application in microvolume rat plasma. Journal of Analytical Methods in Chemistry 2021:6629579 doi: 10.1155/2021/6629579 |
[44] |
Yang G, Sun J, Pan Y, Zhang J, Xiao M, et al. 2018. Isolation and identification of a tribenzylisoquinoline alkaloid from Nelumbo nucifera Gaertn, a novel potential smooth muscle relaxant. Fitoterapia 124:58−65 doi: 10.1016/j.fitote.2017.10.020 |
[45] |
Petruczynik A. 2012. Analysis of alkaloids from different chemical groups by different liquid chromatography methods. Central European Journal of Chemistry 10:802−35 doi: 10.2478/s11532-012-0037-y |
[46] |
Choi YH, Chin Y, Kim J, Jeon SH, Yoo K. 1999. Strateges for supercritical fluid extraction of hyoscyamine and scopolamine salts using basified modifiers. Journal of Chromatography A 863:47−55 doi: 10.1016/S0021-9673(99)00962-0 |
[47] |
Zhang Q, Lin L, Ye W. 2018. Techniques for extraction and isolation of natural products: a comprehensive review. Chinese Medicine 13:20 |
[48] |
Li P, Xu G, Li S, Wang Y, Fan T, et al. 2008. Optimizing ultra performance liquid chromatographic analysis of 10 diterpenoid compounds in Salvia miltiorrhiza using central composite design. Journal of Agriculture and Food Chemistry 56:1164−71 doi: 10.1021/jf073020u |
[49] |
Zhou Y, Zhang Q, Li S, Yin Z, Zhang X, et al. 2012. Quality evaluation of semen oroxyli through simultaneous quantification of 13 components by high performance liquid chromatorgraphy. Current Pharmaceutical Analysis 8:206−13 doi: 10.2174/1573412911208020206 |
[50] |
Morikawa T, Kitagawa N, Tanabe G, Ninomiya K, Okugawa S, et al. 2016. Quantitative determination of alkaloids in lotus flower (flower buds of Nelumbo nucifera) and their melanogenesis inhibitory activity. Molecules 21:930 doi: 10.3390/molecules21070930 |
[51] |
Xiao J, Tian B, Xie B, Yang E, Shi J, et al. 2010. Supercritical fluid extraction and identification of isoquinoline alkaloids from leaves of Nelumbo nucifera Gaertn. European Food Research and Technology 231:407−14 doi: 10.1007/s00217-010-1290-y |
[52] |
Herrero M, Mendiola JA, Cifuentes A, Ibáñez E. 2010. Supercritical fluid extraction: recent advances and applications. Journal of Chromatography A 1217:2495−511 doi: 10.1016/j.chroma.2009.12.019 |
[53] |
Brachet A, Christen P, Gauvrit JY, Loneray R, Lantéri P, et al. 2000. Experimental design in supercritical fluid extraction of cocaine from coca leaves. Journal of Biochemical and Biophysical Methods 43:353−66 doi: 10.1016/S0165-022X(00)00062-2 |
[54] |
Radcliffe C, Maguire K, Lockwood B. 2000. Applications of supercritical fluid extraction and chromatography in forensic science. Journal of Biochemical and Biophysical Methods 43:261−72 doi: 10.1016/S0165-022X(00)00058-0 |
[55] |
Ito Y. 2005. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. Journal of Chromatography A 1065:145−68 doi: 10.1016/j.chroma.2004.12.044 |
[56] |
Ma C, Wang J, Chu H, Zhang X, Wang Z, et al. 2014. Purification and characterization of aporphine alkaloids from leaves of Nelumbo nucifera Gaertn and their effects on glucose consumption in 3T3-L1 adipocytes. International Journal of Molecular Sciences 15:3481−94 doi: 10.3390/ijms15033481 |
[57] |
Zheng Z, Wang M, Wang D, Duan W, Wang X, et al. 2010. Preparative separation of alkaloids from Nelumbo nucifera leaves by conventional and pH-zone-refining counter-current chromatography. Journal of Chromatography B 878:1647−51 doi: 10.1016/j.jchromb.2010.04.020 |
[58] |
Liu Z, Zhao Y, Peng H, Luo T, Liu Y. 2022. Countercurrent chromatography: separation, principle, mechanical design, development trends, and applications. Journal of Liquid Chromatography & Related Technologies 45:51−65 doi: 10.1080/10826076.2022.2117190 |
[59] |
Wu S, Sun C, Cao X, Zhou H, Zhang H, et al. 2004. Preparative counter-current chromatography isolation of liensinine and its analogues from embryo of the seed of Nelumbo nucifera GAERTN. using upright coil planet centrifuge with four multilayer coils connected in series. Journal of Chromatography A 1041:153−62 doi: 10.1016/j.chroma.2004.05.003 |
[60] |
Liu S, Wang B, Li X, Qi L, Liang Y. 2009. Preparative separation and purification of liensinine, isoliensinine and neferine from seed embryo of Nelumbo nucifera GAERTN using high-speed counter-current chromatography. Journal of Separation Science 32:2476−81 doi: 10.1002/jssc.200800766 |
[61] |
Wang X, Liu J, Geng Y, Wang D, Dong H, et al. 2010. Preparative separation of alkaloids from Nelumbo nucifera Gaertn by pH-zone-refining counter-current chromatography. Journal of Separation Science 33:539−44 doi: 10.1002/jssc.200900561 |
[62] |
Duanmu Q, Li A, Sun A, Liu R, Li X. 2010. Semi-preparative high-speed counter-current chromatography separation of alkaloids from embryo of the seed of Nelumbo nucifera Gaertn by pH-gradient elution. Journal of Separation Science 33:1746−51 doi: 10.1002/jssc.200900872 |
[63] |
Chen Y, Fan G, Wu H, Wu Y, Mitchell A. 2007. Separation, identification and rapid determination of liensine, isoliensinine and neferine from embryo of the seed of Nelumbo nucifera Gaertn. by liquid chromatography coupled to diode array detector and tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 43:99−104 doi: 10.1016/j.jpba.2006.06.016 |
[64] |
Luo X, Chen B, Liu J, Yao S. 2005. Simultaneous analysis of N-nornuciferine, O-nornuciferine, nuciferine, and roemerine in leaves of Nelumbo nucifera Gaertn by high-performance liquid chromatography–photodiode array detection–electrospray mass spectrometry. Analytica Chimica Acta 538:129−33 doi: 10.1016/j.aca.2005.01.066 |
[65] |
Lai H, Ouyang Y, Tian G, Zhao J, Zhang J, et al. 2022. Rapid characterization and identification of the chemical constituents and the metabolites of Du-zhi pill using UHPLC coupled with quadrupole time-of-flight mass spectrometry. Journal of Chromatography B 1209:123433 doi: 10.1016/j.jchromb.2022.123433 |
[66] |
Liang C, Zhang X, Diao X, Liao M, Sun Y, et al. 2018. Metabolism profiling of nevadensin in vitro and in vivo by UHPLC-Q-TOF-MS/MS. Journal of Chromatography B 1084:69−79 doi: 10.1016/j.jchromb.2018.03.032 |
[67] |
Guo Y, Chen X, Qi J, Yu B. 2016. Simultaneous qualitative and quantitative analysis of flavonoids and alkaloids from the leaves of Nelumbo nucifera Gaertn. using high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Journal of Separation Science 39:2499−507 doi: 10.1002/jssc.201501315 |
[68] |
Khare CP. 2004. Indian herbal remedies. rational western therapy, ayurvedic and other traditional usage, botany. Heidelberg: Springer Berlin. ix, 524 pp. https://doi.org/10.1007/978-3-642-18659-2 |
[69] |
Liu C, Tsai W, Lin Y, Liao J, Chen C, et al. 2004. The extracts from Nelumbo Nucifera suppress cell cycle progression, cytokine genes expression, and cell proliferation in human peripheral blood mononuclear cells. Life Science 75:699−716 doi: 10.1016/j.lfs.2004.01.019 |
[70] |
Guo F, Yang X, Li X, Feng R, Guan C, et al. 2013. Nuciferine prevents hepatic steatosis and injury induced by a high-fat diet in hamsters. PLoS ONE 8:e63770 doi: 10.1371/journal.pone.0063770 |
[71] |
Wu Y, Tan F, Zhang T, Xie B, Ran L, et al. 2020. The anti-obesity effect of lotus leaves on high-fat-diet-induced obesity by modulating lipid metabolism in C57BL/6J mice. Applied Biological Chemistry 63:61 doi: 10.1186/s13765-020-00541-x |
[72] |
He Y, Tao Y, Qiu L, Xu W, Huang X, et al. 2022. Lotus (Nelumbo nucifera Gaertn.) leaf-fermentation supernatant inhibits adipogenesis in 3T3-L1 preadipocytes and suppresses obesity in high-fat diet-induced obese rats. Nutrients 14:4348 doi: 10.3390/nu14204348 |
[73] |
Pearson ER. 2019. Type 2 diabetes: a multifaceted disease. Diabetologia 62:1107−12 doi: 10.1007/s00125-019-4909-y |
[74] |
Nguyen HK, Ta NT, Minh H, Pham T, Nguyen TQ, et al. 2012. Nuciferine extracted from sacred lotus stimulates insulin secretion in vitro better than glyburide. Canadian Journal of Diabetes 36:S64 doi: 10.1016/j.jcjd.2012.07.470 |
[75] |
Zhang X, Zhang S, Liu X, Wang Y, Chang J, et al. 2018. Oxidation resistance 1 is a novel senolytic target. Aging Cell 17:e12780 doi: 10.1111/acel.12780 |
[76] |
Hwang D, Charchoghlyan H, Lee JS, Kim M. 2015. Bioactive compounds and antioxidant activities of the Korean lotus leaf (Nelumbo nucifera) condiment: volatile and nonvolatile metabolite profiling during fermentation. International Journal of Food Science & Technology 50:1988−95 doi: 10.1111/ijfs.12882 |
[77] |
Guo C, Zhang N, Liu C, Xue J, Chu J, et al. 2020. Qualities and antioxidant activities of lotus leaf affected by different drying methods. Acta Physiologiae Plantarum 42:14 doi: 10.1007/s11738-019-2992-9 |
[78] |
Golkar Z, Bagasra O, Pace DG. 2014. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. Journal of Infection in Developing Countries 8:129−36 doi: 10.3855/jidc.3573 |
[79] |
Li M, Xu Z. 2007. The inhibition of dentifrice containing the lotus leaf-derived inhibitor on periodontitis-related bacteria in vitro. International Dental Journal 57:303−6 doi: 10.1111/j.1875-595X.2007.tb00137.x |
[80] |
Liu W, Yi D, Guo J, Xiang Z, Deng L, et al. 2015. Nuciferine, extracted from Nelumbo nucifera Gaertn, inhibits tumor-promoting effect of nicotine involving Wnt/β-catenin signaling in non-small cell lung cancer. Journal of Ethnopharmacology 165:83−93 doi: 10.1016/j.jep.2015.02.015 |
[81] |
Kang EJ, Lee SK, Park KK, Son SH, Kim KR, et al. 2017. Liensinine and nuciferine, bioactive components of Nelumbo nucifera, inhibit the growth of breast cancer cells and breast cancer-associated bone loss. Evidence-Based Complementary and Alternative Medicine 2017:1583185 doi: 10.1155/2017/1583185 |
[82] |
Xiao M, Xian C, Wang Y, Qi X, Zhang R, et al. 2023. Nuciferine attenuates atherosclerosis by regulating the proliferation and migration of VSMCs through the Calm4/MMP12/AKT pathway in ApoE(-/-) mice fed with High-Fat-Diet. Phytomedicine 108:154536 doi: 10.1016/j.phymed.2022.154536 |
[83] |
Hoesel B, Schmid JA. 2013. The complexity of NF-κB signaling in inflammation and cancer. Molecular Cancer 12:86 |
[84] |
Chen Q, Jin M, Yang F, Zhu J, Xiao Q, et al. 2013. Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediators of Inflammation 2013:928315 doi: 10.1155/2013/928315 |
[85] |
Rai S, Wahile A, Mukherjee K, Saha BP, Mukherjee PK. 2006. Antioxidant activity of Nelumbo nucifera (sacred lotus) seeds. Journal of Ethnopharmacology 104:322−27 doi: 10.1016/j.jep.2005.09.025 |
[86] |
Jung HA, Jin SE, Choi RJ, Kim DH, Kim YS, et al. 2010. Anti-amnesic activity of neferine with antioxidant and anti-inflammatory capacities, as well as inhibition of ChEs and BACE1. Life Sciences 87:420−30 doi: 10.1016/j.lfs.2010.08.005 |
[87] |
Li G, Zhu G, Gao Y, Xiao W, Xu H, et al. 2013. Neferine inhibits the upregulation of CCL5 and CCR5 in vascular endothelial cells during chronic high glucose treatment. Inflammation 36:300−8 doi: 10.1007/s10753-012-9547-1 |
[88] |
Xie Y, Zhang Y, Zhang L, Zeng S, Guo Z, et al. 2013. Protective effects of alkaloid compounds from Nelumbinis Plumula on tert-butyl hydroperoxide-induced oxidative stress. Molecules 18:10285−300 doi: 10.3390/molecules180910285 |
[89] |
Chiu K, Hung Y, Wang S, Tsai Y, Wu N, et al. 2021. Anti-allergic and anti-inflammatory effects of neferine on RBL-2H3 cells. International Journal of Molecular Sciences 22:10994 doi: 10.3390/ijms222010994 |
[90] |
Deng G, Wang L, He W, Zhou W, Chen B, et al. 2018. Anti-inflammatory effects of neferine on LPS-induced human endothelium via MAPK, and NF-κβ pathways. Pharmazie 73:541−44 doi: 10.1691/ph.2018.8443 |
[91] |
Wu X, Guo Y, Min X, Pei L, Chen X. 2018. Neferine, a bisbenzylisoquinoline alkaloid, ameliorates dextran sulfate sodium-induced ulcerative colitis. The American Journal of Chinese Medicine 46:1263−79 doi: 10.1142/S0192415X18500660 |
[92] |
Chen X, Zhao H, Kang X, Tai X, Guo W, et al. 2023. Liensinine, an isoquinoline-type alkaloid in lotus seeds, suppressed TGF-beta1-induced proliferation and migration in human tenon capsule fibroblast cells through MAP3K7 gene. Revista Brasileira De Farmacognosia 33:128−36 doi: 10.1007/s43450-022-00334-x |
[93] |
Shen Y, Bian R, Li Y, Gao Y, Liu Y, et al. 2019. Liensinine induces gallbladder cancer apoptosis and G2/M arrest by inhibiting ZFX-induced PI3K/AKT pathway. Acta Biochimica et Biophysica Sinica 51:606−13 doi: 10.1093/abbs/gmz041 |
[94] |
Yang J, Yu K, Si X, Li S, Cao Y, et al. 2019. Liensinine inhibited gastric cancer cell growth through ROS generation and the PI3K/AKT pathway. Journal of Cancer 10:6431−38 doi: 10.7150/jca.32691 |
[95] |
Zhang X, Liu Z, Xu B, Sun Z, Gong Y, et al. 2012. Neferine, an alkaloid ingredient in lotus seed embryo, inhibits proliferation of human osteosarcoma cells by promoting p38 MAPK-mediated p21 stabilization. European Journal of Pharmacology 677:47−54 doi: 10.1016/j.ejphar.2011.12.035 |
[96] |
Xiao J, Zhang Y, Feng X, Wang J, Qian J. 2006. Effects of isoliensinine on angiotensin II-induced proliferation of porcine coronary arterial smooth muscle cells. Journal of Asian Natural Products Research 8:209−16 doi: 10.1080/1028602042000325609 |
[97] |
Shu G, Yue L, Zhao W, Xu C, Yang J, et al. 2015. Isoliensinine, a bioactive alkaloid derived from embryos of Nelumbo nucifera, induces hepatocellular carcinoma cell apoptosis through suppression of NF-κB signaling. Journal of Agriculture and Food Chemistry 63:8793−803 doi: 10.1021/acs.jafc.5b02993 |
[98] |
Xiao X, Luo F, Fu M, Jiang Y, Liu S, et al. 2022. Evaluating the therapeutic role of selected active compounds in Plumula Nelumbinis on pulmonary hypertension via network pharmacology and experimental analysis. Frontiers in Pharmacology 13:977921 doi: 10.3389/fphar.2022.977921 |
[99] |
Wicha P, Onsa-ard A, Chaichompoo W, Suksamrarn A, Tocharus C. 2020. Vasorelaxant and antihypertensive effects of neferine in rats: anin vitro and in vivo study. Planta Medica 86:496−504 doi: 10.1055/a-1123-7852 |
[100] |
Liu Z, Hu L, Zhang Z, Song L, Zhang P, et al. 2021. Isoliensinine eliminates afterdepolarizations through inhibiting late sodium current and L-type calcium current. Cardiovascular Toxicology 21:67−78 doi: 10.1007/s12012-020-09597-z |
[101] |
Poornima P, Weng CF, Padma VV. 2014. Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest. BioFactors 40:121−31 doi: 10.1002/biof.1115 |
[102] |
Marthandam Asokan S, Mariappan R, Muthusamy S, Velmurugan BK. 2018. Pharmacological benefits of neferine - a comprehensive review. Life Sciences 199:60−70 doi: 10.1016/j.lfs.2018.02.032 |
[103] |
Chang M, Ding S, Dong X, Shang X, Li Y, et al. 2022. Liensinine inhibits cell growth and blocks autophagic flux in nonsmall-cell lung cancer. Journal of Oncology 2022:1533779 doi: 10.1155/2022/1533779 |
[104] |
Park KM, Yoo YJ, Ryu S, Lee SH. 2016. Nelumbo Nucifera leaf protects against UVB-induced wrinkle formation and loss of subcutaneous fat through suppression of MCP3, IL-6 and IL-8 expression. Journal of Photochemistry and Photobiology B: Biology 161:211−16 doi: 10.1016/j.jphotobiol.2016.04.006 |
[105] |
Perry G, Cash AD, Smith MA. 2002. Alzheimer disease and oxidative stress. Journal of Biomedicine and Biotechnology 2:120−23 doi: 10.1155/S1110724302203010 |
[106] |
Xiao J, Zhang J, Chen H, Feng X, Wang J. 2005. Inhibitory effects of isoliensinine on bleomycin-induced pulmonary fibrosis in mice. Planta Medica 71:225−30 doi: 10.1055/s-2005-837821 |
[107] |
Chen M, Zhang J, Wang J, Gao L, Chen X, et al. 2015. Anti-fibrotic effects of neferine on carbon tetrachlorideinduced hepatic fibrosis in mice. The American Journal of Chinese Medicine 43:231−40 doi: 10.1142/S0192415X15500159 |
[108] |
Menéndez-Perdomo IM, Facchini PJ. 2023. Elucidation of the (R)-enantiospecific benzylisoquinoline alkaloid biosynthetic pathways in sacred lotus (Nelumbo nucifera). Scientific Reports 13:2955 doi: 10.1038/s41598-023-29415-0 |
[109] |
Rueffer M, Zenk MH. 1987. Distant precursors of benzylisoquinoline alkaloids and their enzymatic formation. Verlag der Zeitschrift für Naturforschung 42C:319−32 doi: 10.1515/znc-1987-0402 |
[110] |
Hagel JM, Facchini PJ. 2013. Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant and Cell Physiology 54:647−72 doi: 10.1093/pcp/pct020 |
[111] |
Mizutani M, Sato F. 2011. Unusual P450 reactions in plant secondary metabolism. Archives of Biochemistry and Biophysics 507:194−203 doi: 10.1016/j.abb.2010.09.026 |
[112] |
Ming R, VanBuren R, Liu Y, Yang M, Han Y, et al. 2013. Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biology 14:R41 doi: 10.1186/gb-2013-14-5-r41 |
[113] |
Gui S, Peng J, Wang X, Wu Z, Cao R, et al. 2018. Improving Nelumbo nucifera genome assemblies using high-resolution genetic maps and BioNano genome mapping reveals ancient chromosome rearrangements. The Plant Journal 94:721−34 doi: 10.1111/tpj.13894 |
[114] |
Shi T, Rahmani RS, Gugger PF, Wang M, Li H, et al. 2020. Distinct expression and methylation patterns for genes with different fates following a single whole-genome duplication in flowering plants. Molecular Biology and Evolution 37:2394−413 doi: 10.1093/molbev/msaa105 |
[115] |
Qi H, Yu F, Deng J, Zhang L, Yang P. 2023. The high-quality genome of lotus reveals tandem duplicate genes involved in stress response and secondary metabolites biosynthesis. Horticulture Research 10:uhad040 doi: 10.1093/hr/uhad040 |
[116] |
Liscombe DK, Macleod BP, Loukanina N, Nandi OI, Facchini PJ. 2005. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66:1374−93 doi: 10.1016/j.phytochem.2005.04.029 |
[117] |
Vimolmangkang S, Deng X, Owiti A, Meelaph T, Ogutu C, et al. 2016. Evolutionary origin of the NCSI gene subfamily encoding norcoclaurine synthase is associated with the biosynthesis of benzylisoquinoline alkaloids in plants. Scientific Reports 6:26323 doi: 10.1038/srep26323 |
[118] |
Nelson DR, Schuler MA. 2013. Cytochrome P450 genes from the sacred lotus genome. Tropical Plant Biology 6:138−51 doi: 10.1007/s12042-013-9119-z |
[119] |
Menéndez-Perdomo IM, Facchini PJ. 2020. Isolation and characterization of two O-methyltransferases involved in benzylisoquinoline alkaloid biosynthesis in sacred lotus (Nelumbo nucifera). Journal of Biological Chemistry 295:1598−612 doi: 10.1074/jbc.RA119.011547 |
[120] |
Yu Y, Liu Y, Dong G, Jiang J, Leng L, et al. 2023. Functional characterization and key residues engineering of a regiopromiscuity O-methyltransferase involved in benzylisoquinoline alkaloid biosynthesis in Nelumbo nucifera. Horticulture Research 10:uhac276 doi: 10.1093/hr/uhac276 |
[121] |
Li J, Xiong Y, Li Y, Ye S, Yin Q, et al. 2019. Comprehensive analysis and functional studies of WRKY transcription factors in Nelumbo nucifera. International Journal of Molecular Sciences 20:5006 doi: 10.3390/ijms20205006 |
[122] |
Li J, Li Y, Dang M, Li S, Chen S, et al. 2022. Jasmonate-responsive transcription factors NnWRKY70a and NnWRKY70b positively regulate benzylisoquinoline alkaloid biosynthesis in lotus (Nelumbo nucifera). Frontiers in Plant Science 13:862915 doi: 10.3389/fpls.2022.862915 |