[1]

Liu J, Wang X, Ding Y. 2013. Optimization of adding konjac glucomannan to improve gel properties of low-quality surimi. Carbohydrate Polymers 92(1):484−89

doi: 10.1016/j.carbpol.2012.08.096
[2]

Zhang Y, Bai G, Wang J, Wang Y, Jin G, et al. 2023. Myofibrillar protein denaturation/oxidation in freezing-thawing impair the heat-induced gelation: Mechanisms and control technologies. Trends in Food Science & Technology 138:655−70

doi: 10.1016/j.jpgs.2023.06.035
[3]

Núñez-Flores R, Cando D, Borderías AJ, Moreno HM. 2018. Importance of salt and temperature in myosin polymerization during surimi gelation. Food Chemistry 239:1226−34

doi: 10.1016/j.foodchem.2017.07.028
[4]

Zhu Y, Nie Y, Lu Y, Ye T, Jiang S, et al. 2022. Contribution of phosphorylation modification by sodium tripolyphosphate to the properties of surimi-crabmeat mixed gels. LWT 169:114052

doi: 10.1016/j.lwt.2022.114052
[5]

Hunter RW, Dhaun N, Bailey MA. 2022. The impact of excessive salt intake on human health. Nature Reviews Nephrology 18(5):321−35

doi: 10.1038/s41581-021-00533-0
[6]

Zhang C, Chen L, Lu M, Ai C, Cao H, et al. 2023. Effect of cellulose on gel properties of heat-induced low-salt surimi gels: Physicochemical characteristics, water distribution and microstructure. Food Chemistry: X 19:100820

doi: 10.1016/j.fochx.2023.100820
[7]

Liang F, Lin L, He T, Zhou X, Jiang S, et al. 2020. Effect of transglutaminase on gel properties of surimi and precocious Chinese mitten crab (Eriocheir sinensis) meat. Food Hydrocolloids 98:105261

doi: 10.1016/j.foodhyd.2019.105261
[8]

Wasinnitiwong N, Benjakul S, Hong H. 2022. Effects of κ-carrageenan on gel quality of threadfin bream (Nemipterus spp.) surimi containing salted duck egg white powder. International Journal of Biological Macromolecules 221:61−70

doi: 10.1016/j.ijbiomac.2022.08.200
[9]

Salunke P, Metzger LE. 2023. Impact of transglutaminase treated micellar casein concentrate and milk protein concentrate on the functionality of processed cheese product slice formulations. Food Materials Research 3:31

doi: 10.48130/FMR-2023-0031
[10]

Fu X, Hayat K, Li Z, Lin Q, Xu S, et al. 2012. Effect of microwave heating on the low-salt gel from silver carp (Hypophthalmichthys molitrix) surimi. Food Hydrocolloids 27(2):301−8

doi: 10.1016/j.foodhyd.2011.09.009
[11]

Liang F, Zhu Y, Ye T, Jiang S, Lin L, et al. 2020. Effect of ultrasound assisted treatment and microwave combined with water bath heating on gel properties of surimi-crabmeat mixed gels. LWT 133:110098

doi: 10.1016/j.lwt.2020.110098
[12]

Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, et al. 1989. Purification and characteristics of a novel transglutaminase derived from microorganisms. Agricultural and Biological Chemistry 53(10):2613−17

doi: 10.1080/00021369.1989.10869735
[13]

Zhu JC, Cheng Y, Ouyang ZY, Yang YX, Ma L, et al. 2023. 3D printing surimi enhanced by surface crosslinking based on dry-spraying transglutaminase, and its application in dysphagia diets. Food Hydrocolloids 140:108600

doi: 10.1016/j.foodhyd.2023.108600
[14]

Chanarat S, Benjakul S. 2013. Impact of microbial transglutaminase on gelling properties of Indian mackerel fish protein isolates. Food Chemistry 136(2):929−37

doi: 10.1016/j.foodchem.2012.09.021
[15]

Jiang Q, Chen N, Gao P, Yu D, Yang F, et al. 2023. Influence of L-arginine addition on the gel properties of reduced-salt white leg shrimp (Litopenaeus vannamei) surimi gel treated with microbial transglutaminase. LWT 173:114310

doi: 10.1016/j.lwt.2022.114310
[16]

Wang X, Feng T, Wang X, Zhang X, Xia S. 2021. Gelation and microstructural properties of fish myofibrillar protein gels with the incorporation of ʟ-lysine and ʟ-arginine at low ionic strength. Journal of the Science of Food and Agriculture 101(13):5469−77

doi: 10.1002/jsfa.11195
[17]

Zhu X, Ning C, Li S, Xu P, Zheng Y, et al. 2018. Effects of ʟ-lysine/ʟ-arginine on the emulsion stability, textural, rheological and microstructural characteristics of chicken sausages. International Journal of Food Science & Technology 53(1):88−96

doi: 10.1111/ijfs.13561
[18]

Cao Y, Li B, Fan X, Wang J, Zhu Z, et al. 2021. Synergistic recovery and enhancement of gelling properties of oxidatively damaged myofibrillar protein by L-lysine and transglutaminase. Food Chemistry 358:129860

doi: 10.1016/j.foodchem.2021.129860
[19]

Cando D, Borderías AJ, Moreno HM. 2016. Combined effect of aminoacids and microbial transglutaminase on gelation of low salt surimi content under high pressure processing. Innovative Food Science and Emerging Technologies 36:10−17

doi: 10.1016/j.ifset.2016.05.010
[20]

Cai L, Cao A, Bai F, Li J. 2015. Effect of ε-polylysine in combination with alginate coating treatment on physicochemical and microbial characteristics of Japanese sea bass (Lateolabrax japonicas) during refrigerated storage. LWT - Food Science and Technology 62(2):1053−59

doi: 10.1016/j.lwt.2015.02.002
[21]

Li Q, Zhang J, Zhu J, Lin H, Sun T, et al. 2021. Effects of gallic acid combined with epsilon-polylysine hydrochloride incorporated in a pullulan-CMC edible coating on the storage quality of sea bass. RSC Advances 11(47):29675−83

doi: 10.1039/D1RA02320A
[22]

Ma W, Yuan F, Feng L, Wang J, Sun Y, et al. 2022. ε-Polylysine-mediated enhancement of the structural stability and gelling properties of myofibrillar protein under oxidative stress. International Journal of Biological Macromolecules 220:1114−23

doi: 10.1016/j.ijbiomac.2022.08.143
[23]

Lang A, Lan W, Gu Y, Wang Z, Xie J, et al. 2023. Effects of ε-polylysine and chitooligosaccharide Maillard reaction products on quality of refrigerated sea bass fillets. Journal of the Science of Food and Agriculture 103(1):152−63

doi: 10.1002/jsfa.12125
[24]

Fang Q, Shi L, Ren Z, Hao G, Chen J, et al. 2021. Effects of emulsified lard and TGase on gel properties of threadfin bream (Nemipterus virgatus) surimi. LWT 146:111513

doi: 10.1016/j.lwt.2021.111513
[25]

Yongsawatdigul J, Piyadhammaviboon P. 2005. Effect of microbial transglutaminase on autolysis and gelation of lizardfish surimi. Journal of the Science of Food and Agriculture 85(9):1453−60

doi: 10.1002/jsfa.2149
[26]

Dong X, Pan Y, Zhao W, Huang Y, Qu W, et al. 2020. Impact of microbial transglutaminase on 3D printing quality of Scomberomorus niphonius surimi. LWT 124:109123

doi: 10.1016/j.lwt.2020.109123
[27]

Li Q, Yi S, Wang W, Xu Y, Mi H, et al. 2022. Different thermal treatment methods and TGase addition affect gel quality and flavour characteristics of Decapterus maruadsi surimi products. Foods 11(1):66

doi: 10.3390/foods11010066
[28]

Wang R, Gao R, Xiao F, Zhou X, Wang H, et al. 2019. Effect of chicken breast on the physicochemical properties of unwashed sturgeon surimi gels. LWT 113:108306

doi: 10.1016/j.lwt.2019.108306
[29]

Gao W, Hou R, Zeng XA. 2019. Synergistic effects of ultrasound and soluble soybean polysaccharide on frozen surimi from grass carp. Journal of Food Engineering 240:1−8

doi: 10.1016/j.jfoodeng.2018.07.003
[30]

Hu Y, Xia W, Ge C. 2008. Characterization of fermented silver carp sausages inoculated with mixed starter culture. LWT - Food Science and Technology 41(4):730−38

doi: 10.1016/j.lwt.2007.04.004
[31]

Cao Y, Han X, Yuan F, Fan X, Liu M, et al. 2022. Effect of combined treatment of ʟ-arginine and transglutaminase on the gelation behavior of freeze-damaged myofibrillar protein. Food & function 13(3):1495−505

doi: 10.1039/D1FO03691B
[32]

Liu R, Zhao SM, Liu YM, Yang H, Xiong SB, et al. 2010. Effect of pH on the gel properties and secondary structure of fish myosin. Food Chemistry 121(1):196−202

doi: 10.1016/j.foodchem.2009.12.030
[33]

Chang SS, Lu WY, Park SH, Kang DH. 2010. Control of foodborne pathogens on ready-to-eat roast beef slurry by ε-polylysine. International Journal of Food Microbiology 141(3):236−41

doi: 10.1016/j.ijfoodmicro.2010.05.021
[34]

Zhang Y, Zhang D, Huang Y, Chen L, Bao P, et al. 2020. ʟ-arginine and ʟ-lysine degrade troponin-T, and ʟ-arginine dissociates actomyosin: Their roles in improving the tenderness of chicken breast. Food Chemistry 318:126516

doi: 10.1016/j.foodchem.2020.126516
[35]

Chanarat S, Benjakul S, H-Kittikun A. 2012. Comparative study on protein cross-linking and gel enhancing effect of microbial transglutaminase on surimi from different fish. Journal of the Science of Food and Agriculture 92(4):844−52

doi: 10.1002/jsfa.4656
[36]

Gao R, Shi T, Sun Q, Li X, McClements DJ, et al. 2019. Effects of L-arginine and L-histidine on heat-induced aggregation of fish myosin: bighead carp (aristichthys nobilis). Food Chemistry 295:320−26

doi: 10.1016/j.foodchem.2019.05.095
[37]

Yang R, Xu A, Chen Y, Sun N, Zhang JJ, et al. 2020. Effect of laver powder on textual, rheological properties and water distribution of squid (Dosidicus gigas) surimi gel. Journal of Texture Studies 51(6):968−78

doi: 10.1111/jtxs.12556
[38]

An Y, Xiong S, Liu R, You J, Yin T, et al. 2021. The effect of cross-linking degree on physicochemical properties of surimi gel as affected by MTGase. Journal of the Science of Food and Agriculture 101(15):6228−38

doi: 10.1002/jsfa.11274
[39]

Ayaseh A, Alirezalu K, Yaghoubi M, Razmjouei Z, Jafarzadeh S, et al. 2022. Production of nitrite-free frankfurter-type sausages by combining ε-polylysine with beetroot extracts: An assessment of microbial physicochemical, and sensory properties. Food Bioscience 49:101936

doi: 10.1016/j.fbio.2022.101936
[40]

Yang Z, Wang W, Wang H, Ye Q. 2014. Effects of a highly resistant rice starch and pre-incubation temperatures on the physicochemical properties of surimi gel from grass carp (Ctenopharyn odon idellus). Food Chemistry 145(4):212−9

doi: 10.1016/j.foodchem.2013.08.040
[41]

Guo X, Shi L, Xiong S, Hu Y, You J, et al. 2019. Gelling properties of vacuum-freeze dried surimi powder as influenced by heating method and microbial transglutaminase. LWT-Food Science and Technology 99:105−11

doi: 10.1016/j.lwt.2018.09.050
[42]

Fan K, Zhang M, Bhandari B, Jiang F. 2019. A combination treatment of ultrasound and ε-polylysine to improve microorganisms and storage quality of fresh-cut lettuce. LWT 113:108315

doi: 10.1016/j.lwt.2019.108315
[43]

Li N, Liu W, Shen Y, Mei J, Xie J. 2019. Coating Effects of ε-polylysine and rosmarinic acid combined with chitosan on the storage quality of fresh half-smooth tongue sole (Cynoglossus semilaevis Günther) fillets. Coatings 9(4):273

doi: 10.3390/coatings9040273
[44]

Truong BQ, Buckow R, Nguyen M. 2020. Mechanical and functional properties of unwashed barramundi (lates calcarifer) gels as affected by high-pressure processing at three different temperatures and salt concentrations. Journal of Aquatic Food Product Technology 29(4):373−82

doi: 10.1080/10498850.2020.1739792
[45]

Ducel V, Pouliquen D, Richard J, Boury F. 2008. 1H NMR relaxation studies of protein-polysaccharide mixtures. International Journal of Biological Macromolecules 43(4):359−66

doi: 10.1016/j.ijbiomac.2008.07.007
[46]

Singh A, Prabowo FF, Benjakul S, Pranoto Y, Chantakun K. 2020. Combined effect of microbial transglutaminase and ethanolic coconut husk extract on the gel properties and in-vitro digestibility of spotted golden goatfish (Parupeneus heptacanthus) surimi gel. Food Hydrocolloids 109:106107

doi: 10.1016/j.foodhyd.2020.106107
[47]

Xiao K, Pan L, Tu K. 2022. Effect of the addition of beeswax on the gel properties and microstructure of white mushroom powder-based hybrid gelator system for 3D food printing. Food Materials Research 2:6

doi: 10.48130/FMR-2022-0006
[48]

Buamard N, Benjakul S. 2019. Effect of ethanolic coconut husk extract and pre-emulsification on properties and stability of surimi gel fortified with seabass oil during refrigerated storage. LWT - Food Science and Technology 108:160−67

doi: 10.1016/j.lwt.2019.03.038
[49]

Cao Y, Ma W, Huang J, Xiong Y. 2020. Effects of sodium pyrophosphate coupled with catechin on the oxidative stability and gelling properties of myofibrillar protein. Food Hydrocolloids 104:105722

doi: 10.1016/j.foodhyd.2020.105722
[50]

Xu P, Zheng Y, Zhu X, Li S, Zhou C, et al. 2018. ʟ-lysine and ʟ-arginine inhibit the oxidation of lipids and proteins of emulsion sausage by chelating iron ion and scavenging radical. Asian-Australasian Journal of Animal Sciences 31(6):905−13

doi: 10.5713/ajas.17.0617