[1]

Ali MM, Anwar R, Shafique MW, Yousef AF, Chen F. 2021. Exogenous application of Mg, Zn and B influences phyto-nutritional composition of leaves and fruits of loquat (Eriobotrya japonica Lindl.). Agronomy 11:224

doi: 10.3390/agronomy11020224
[2]

Ali MM, Li B, Zhi C, Yousef AF, Chen F. 2021. Foliar-supplied molybdenum improves phyto-nutritional composition of leaves and fruits of loquat (Eriobotrya japonica Lindl.). Agronomy 11:892

doi: 10.3390/agronomy11050892
[3]

Badenes ML, Canyamas T, Romero CC, Soriano JM, Martinez J, et al. 2003. Genetic diversity in European collection of loquat (Eriobotrya japonica Lindl.). Acta Horticulturae 620:169−74

[4]

Zhi C, Ali MM, Zhang J, Shi M, Ma S, et al. 2021. Effect of paper and aluminum bagging on fruit quality of loquat (Eriobotrya japonica Lindl.). Plants 10:2704

doi: 10.3390/plants10122704
[5]

Tian S, Qin G, Li B. 2011. Loquat (Eriobotrya japonica L.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits, ed. Yahia EM. Elsevier. pp. 424−444e. https://doi.org/10.1533/9780857092885.424

[6]

Karadenİz T, Șenyurt M, Bak T. 2012. Loquat as a source of nectar and pollen in the winter for beekeeping. Scientific Papers, Series B, Horticulture LVI:319−22

[7]

Ali MM, Rizwan HM, Yousef AF, Zhi C, Chen F. 2021. Analysis of toxic elements in leaves and fruits of loquat by inductively coupled plasma-mass spectrometry (ICP-MS). Acta Scientiarum Polonorum Hortorum Cultus 20:33−42

doi: 10.24326/asphc.2021.5.4
[8]

Zheng S, Johnson AJ, Li Y, Chu C, Hulcr J. 2019. Cryphalus eriobotryae sp. nov. (Coleoptera:Curculionidae:Scolytinae), a new insect pest of loquat Eriobotrya japonica in China. Insects 10:180

doi: 10.3390/insects10060180
[9]

Chen F, Liu X, Chen L. 2009. Developmental changes in pulp organic acid concentration and activities of acid-metabolising enzymes during the fruit development of two loquat (Eriobotrya japonica Lindl.) cultivars differing in fruit acidity. Food Chemistry 114:657−64

doi: 10.1016/j.foodchem.2008.10.003
[10]

Bermejo A, Cano A. 2012. Analysis of nutritional constituents in twenty citrus cultivars from the Mediterranean area at different stages of ripening. Food and Nutrition Sciences 3:639−50

doi: 10.4236/fns.2012.35088
[11]

Ren J, Tai Y, Dong M, Shao J, Yang S, et al. 2015. Characterisation of free and bound volatile compounds from six different varieties of citrus fruits. Food Chemistry 185:25−32

doi: 10.1016/j.foodchem.2015.03.142
[12]

Zhang X, Wei X, Ali MM, Rizwan HM, Li B, et al. 2021. Changes in the content of organic acids and expression analysis of citric acid accumulation-related genes during fruit development of yellow (Passiflora edulis f. flavicarpa) and purple (Passiflora edulis f. edulis) passion fruits. International Journal of Molecular Sciences 22:5765

doi: 10.3390/ijms22115765
[13]

Zhang Y, Hu C, Tan Q, Zheng C, Gui H, et al. 2014. Plant nutrition status, yield and quality of satsuma mandarin (Citrus unshiu Marc.) under soil application of Fe-EDDHA and combination with zinc and manganese in calcareous soil. Scientia Horticulturae 174:46−53

doi: 10.1016/j.scienta.2014.05.005
[14]

Ruffner H, Possner D, Brem S, Rast D. 1984. The physiological role of malic enzyme in grape ripening. Planta 160:444−48

doi: 10.1007/BF00429761
[15]

Pan T, Ali MM, Gong J, She W, Pan D, et al. 2021. Fruit physiology and sugar-acid profile of 24 pomelo (Citrus grandis (L.) Osbeck) cultivars grown in subtropical region of China. Agronomy 11:2393

doi: 10.3390/agronomy11122393
[16]

Yu X, Ali MM, Li B, Fang T, Chen F. 2021. Transcriptome data-based identification of candidate genes involved in metabolism and accumulation of soluble sugars during fruit development in 'Huangguan' plum. Journal of Food Biochemistry 45:e13878

doi: 10.1111/jfbc.13878
[17]

Yu X, Ali MM, Gull S, Fang T, Wu W, et al. 2023. Transcriptome data-based identification and expression profiling of genes potentially associated with malic acid accumulation in plum (Prunus salicina Lindl.). Scientia Horticulturae 322:112397

doi: 10.1016/j.scienta.2023.112397
[18]

Ali MM, Anwar R, Rehman RNU, Ejaz S, Ali S, et al. 2022. Sugar and acid profile of loquat (Eriobotrya japonica Lindl.), enzymes assay and expression profiling of their metabolism-related genes as influenced by exogenously applied boron. Frontiers in Plant Science 13:1039360

doi: 10.3389/fpls.2022.1039360
[19]

Ali MM, Gull S, Hu X, Hou Y, Chen F. 2023. Exogenously applied zinc improves sugar-acid profile of loquat (Eriobotrya japonica Lindl.) by regulating enzymatic activities and expression of their metabolism-related genes. Plant Physiology and Biochemistry 201:107829

doi: 10.1016/j.plaphy.2023.107829
[20]

Pedranzani H, Vigliocco A. 2017. Regulation of jasmonic acid and salicylic acid levels in abiotic stress tolerance: past and present. In Mechanisms Behind Phytohormonal Signalling and Crop Abiotic Stress Tolerance, eds. Singh VP, Singh S, Prasad SM. New York, NY: Nova Science Publishers. pp. 329−70

[21]

Ali Q, Shahid S, Nazar N, Hussain AI, Ali S, et al. 2020. Use of phytohormones in conferring tolerance to environmental stress. In Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II, ed. Hasanuzzaman M. Springer, Singapore. pp. 245−355. https://doi.org/10.1007/978-981-15-2172-0_11

[22]

Creelman RA, Mullet JE. 1995. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proceedings of the National Academy of Sciences of the United States of America 92:4114−19

doi: 10.1073/pnas.92.10.4114
[23]

Lolaei A, Zamani S, Ahmadian E, Mobasheri S. 2013. Effect of methyl jasmonate on the composition of yield and growth of strawberry (Selva and Queen Elisa). International Journal of Agriculture and Crop Sciences 5:200−06

[24]

Ali MM, Anwar R, Malik AU, Khan AS, Ahmad S, et al. 2022. Plant growth and fruit quality response of strawberry is improved after exogenous application of 24-epibrassinolide. Journal of Plant Growth Regulation 41:1786−99

doi: 10.1007/s00344-021-10422-2
[25]

Hortwitz W. 1975. Official methods of analysis of the association of official analytical chemists, 12th edition. Washington, USA: Benjamin Franklin station. 1094 pp.

[26]

Sharma N, Kaur N, Gupta AK. 1998. Effects of gibberellic acid and chlorocholine chloride on tuberisation and growth of potato (Solanum tuberosum L). Journal of the Science of Food and Agriculture 78:466−70

doi: 10.1002/(SICI)1097-0010(199812)78:4<466::AID-JSFA140>3.0.CO;2-1
[27]

Gan X, Jing Y, Shahid MQ, He Y, Baloch FS, et al. 2020. Identification, phylogenetic analysis, and expression patterns of the SAUR gene family inloquat (Eriobotrya japonica). Turkish Journal of Agriculture and Forestry 44:15−23

doi: 10.3906/tar-1810-98
[28]

Zhi C, Ali MM, Alam SM, Gull S, Ali S, et al. 2022. Genome-wide in silico analysis and expression profiling of Phospho enol pyruvate carboxylase genes in loquat, apple, peach, strawberry and pear. Agronomy 12:25

doi: 10.3390/agronomy12010025
[29]

Ali MM, Alam SM, Anwar R, Ali S, Shi M, et al. 2021. Genome-wide identification, characterization and expression profiling of aluminum-activated malate transporters in Eriobotrya japonica Lindl. Horticulturae 7:441

doi: 10.3390/horticulturae7110441
[30]

Munhoz CF, Santos AA, Arenhart RA, Santini L, Monteiro-Vitorello CB, et al. 2015. Analysis of plant gene expression during passion fruit-Xanthomonas axonopodis interaction implicates lipoxygenase 2 in host defence. Annals of Applied Biology 167:135−55

doi: 10.1111/aab.12215
[31]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08

doi: 10.1006/meth.2001.1262
[32]

Xu L, Xu H, Cao Y, Yang P, Feng Y, et al. 2017. Validation of reference genes for quantitative real-time PCR during bicolor tepal development in asiatic hybrid lilies (Lilium spp.). Frontiers in Plant Science 8:669

doi: 10.3389/fpls.2017.00669
[33]

De Rossi S, Di Marco G, Bruno L, Gismondi A, Canini A. 2021. Investigating the drought and salinity effect on the redox components of Sulla coronaria (L.) Medik. Antioxidants 10:1048

doi: 10.3390/antiox10071048
[34]

Borsani J, Budde CO, Porrini L, Lauxmann MA, Lombardo VA, et al. 2009. Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. Journal of Experimental Botany 60:1823−37

doi: 10.1093/jxb/erp055
[35]

Toker R, Gölükcü M, Tokgöz H, Tepe S. 2013. Organic acids and sugar compositions of some loquat cultivars (Eriobotrya japonica L.) grown in Turkey. Journal of Agricultural Sciences 19:121−28

[36]

Wei Y, Xu F, Shao X. 2017. Changes in soluble sugar metabolism in loquat fruit during different cold storage. Journal of Food Science and Technology 54:1043−51

doi: 10.1007/s13197-017-2536-5
[37]

Cao S, Yang Z, Zheng Y. 2013. Sugar metabolism in relation to chilling tolerance of loquat fruit. Food Chemistry 136:139−43

doi: 10.1016/j.foodchem.2012.07.113
[38]

Liu S, Liu Y, Liu N, Zhang Y, Zhang Q, et al. 2016. Sugar and organic acid components in fruits of plum cultivar resources of genus Prunus. Scientia Agriculture Sinca 49:3188−98

doi: 10.3864/j.issn.0578-1752.2016.16.012
[39]

Wang S, Zheng W. 2005. Preharvest application of methyl jasmonate increases fruit quality and antioxidant capacity in raspberries. International Journal of Food Science & Technology 40:187−95

doi: 10.1111/j.1365-2621.2004.00930.x
[40]

Dong T, Wang B, Zhang H, Wang J, Yao Y, et al. 2020. Effects of different concentrations of methyl jasmonate on fruit quality of citrus Huangguogan. IOP Conference Series: Earth and Environmental Science 474:032026

doi: 10.1088/1755-1315/474/3/032026
[41]

Stevens MA, Kader AA, Albright M. 1979. Potential for increasing tomato flavor via increased sugar and acid content. Journal of the American Society for Horticultural Science 104:40−42

doi: 10.21273/JASHS.104.1.40
[42]

Mosa WFA, Abd EL-Megeed NA, Ali MM, Abada HS, Ali HM, et al. 2022. Preharvest foliar applications of citric acid, gibberellic acid and humic acid improve growth and fruit quality of 'Le Conte' pear (Pyrus communis L.). Horticulturae 8:507

doi: 10.3390/horticulturae8060507
[43]

Mosa WFA, Behiry SI, Ali HM, Abdelkhalek A, Sas-Paszt L, et al. 2022. Pomegranate trees quality under drought conditions using potassium silicate, nanosilver, and selenium spray with valorization of peels as fungicide extracts. Scientific Reports 12:6363

doi: 10.1038/s41598-022-10354-1
[44]

Li B, Ali MM, Guo T, Alam SM, Gull S, et al. 2022. Genome-wide identification, in silico analysis and expression profiling of SWEET gene family in loquat (Eriobotrya japonica Lindl.). Agriculture 12:1312

doi: 10.3390/agriculture12091312
[45]

Al-Saif AM, Mosa WFA, Saleh AA, Ali MM, Sas-Paszt L, et al. 2022. Yield and fruit quality response of pomegranate (Punica granatum) to foliar spray of potassium, calcium and kaolin. Horticulturae 8:946

doi: 10.3390/horticulturae8100946
[46]

Almutairi KF, Saleh AA, Ali MM, Sas-Paszt L, Abada HS, et al. 2022. Growth performance of guava trees after the exogenous application of amino acids glutamic acid, arginine, and glycine. Horticulturae 8:1110

doi: 10.3390/horticulturae8121110
[47]

Hamedalla AM, Ali MM, Ali WM, Ahmed MAA, Kaseb MO, et al. 2022. Increasing the performance of cucumber (Cucumis sativus L.) seedlings by LED illumination. Scientific Reports 12:852

doi: 10.1038/s41598-022-04859-y
[48]

Wang SY, Bowman L, Ding M. 2008. Methyl jasmonate enhances antioxidant activity and flavonoid content in blackberries (Rubus sp.) and promotes antiproliferation of human cancer cells. Food Chemistry 107:1261−69

doi: 10.1016/j.foodchem.2007.09.065
[49]

Saavedra GM, Sanfuentes E, Figueroa PM, Figueroa CR. 2017. Independent preharvest applications of methyl jasmonate and chitosan elicit differential upregulation of defense-related genes with reduced incidence of gray mold decay during postharvest storage of Fragaria chiloensis fruit. International Journal of Molecular Sciences 18:1420

doi: 10.3390/ijms18071420
[50]

Zuñiga PE, Castañeda Y, Arrey-Salas O, Fuentes L, Aburto F, et al. 2020. Methyl jasmonate applications from flowering to ripe fruit stages of strawberry (Fragaria × ananassa 'Camarosa') reinforce the fruit antioxidant response at post-harvest. Frontiers in Plant Science 11:538

doi: 10.3389/fpls.2020.00538
[51]

Chen Y, Zhang Q, Hu W, Zhang X, Wang L, et al. 2017. Evolution and expression of the fructokinase gene family in Saccharum. BMC Genomics 18:197

doi: 10.1186/s12864-017-3535-7
[52]

Renz A, Stitt M. 1993. Substrate specificity and product inhibition of different forms of fructokinases and hexokinases in developing potato tubers. Planta 190:166−75

doi: 10.1007/BF00196608
[53]

Damari-Weissler H, Rachamilevitch S, Aloni R, German MA, Cohen S, et al. 2009. LeFRK2 is required for phloem and xylem differentiation and the transport of both sugar and water. Planta 230:795−805

doi: 10.1007/s00425-009-0985-4
[54]

German MA, Dai N, Matsevitz T, Hanael R, Petreikov M, et al. 2003. Suppression of fructokinase encoded by LeFRK2 in tomato stem inhibits growth and causes wilting of young leaves. The Plant Journal 34:837−46

doi: 10.1046/j.1365-313X.2003.01765.x
[55]

Ruan YL. 2014. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology 65:33−67

doi: 10.1146/annurev-arplant-050213-040251
[56]

Stein O, Granot D. 2019. An overview of sucrose synthases in plants. Frontiers in Plant Science 10:95

doi: 10.3389/fpls.2019.00095
[57]

Langenkämper G, Fung RWM, Newcomb RD, Atkinson RG, Gardner RC, et al. 2002. Sucrose phosphate synthase genes in plants belong to three different families. Journal of Molecular Evolution 54:322−32

doi: 10.1007/s00239-001-0047-4
[58]

Li M, Feng F, Cheng L. 2012. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS ONE 7:e33055

doi: 10.1371/journal.pone.0033055
[59]

Wang Z, Wei P, Wu M, Xu Y, Li F, et al. 2015. Analysis of the sucrose synthase gene family in tobacco: structure, phylogeny, and expression patterns. Planta 242:153−66

doi: 10.1007/s00425-015-2297-1
[60]

Xu X, Yang Y, Liu C, Sun Y, Zhang T, et al. 2019. The evolutionary history of the sucrose synthase gene family in higher plants. BMC Plant Biology 19:566

doi: 10.1186/s12870-019-2181-4
[61]

Abdullah M, Cao Y, Cheng X, Meng D, Chen Y, et al. 2018. The sucrose synthase gene family in Chinese pear (Pyrus bretschneideri Rehd.): structure, expression, and evolution. Molecules 23:1144

doi: 10.3390/molecules23051144
[62]

Dali N, Michaud D, Yelle S. 1992. Evidence for the involvement of sucrose phosphate synthase in the pathway of sugar accumulation in sucrose-accumulating tomato fruits. Plant Physiology 99:434−38

doi: 10.1104/pp.99.2.434
[63]

Liu J, Guo S, He H, Zhang H, Gong G, et al. 2013. Dynamic characteristics of sugar accumulation and related enzyme activities in sweet and non-sweet watermelon fruits. Acta Physiologiae Plantarum 35:3213−22

doi: 10.1007/s11738-013-1356-0
[64]

Zhu Q, Gao P, Liu S, Zhu Z, Amanullah S, et al. 2017. Comparative transcriptome analysis of two contrasting watermelon genotypes during fruit development and ripening. BMC Genomics 18:3

doi: 10.1186/s12864-016-3442-3
[65]

Li P, Wu W, Chen F, Liu X, Lin Y, et al. 2015. Prunus salicina 'Crown', a yellow-fruited Chinese plum. HortScience 50:1822−24

doi: 10.21273/HORTSCI.50.12.1822