[1]

Vargas W, Cumino A, Salerno GL. 2003. Cyanobacterial alkaline/neutral invertases. Origin of sucrose hydrolysis in the plant cytosol? Planta 216(6):951−60

doi: 10.1007/s00425-002-0943-x
[2]

Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS. 2010. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Molecular Plant 3(6):942−55

doi: 10.1093/mp/ssq044
[3]

Hubbard NL, Pharr DM, Huber SC. 1991. Sucrose phosphate synthase and other sucrose metabolizing enzymes in fruits of various species. Physiologia Plantarum 82:191−96

doi: 10.1111/j.1399-3054.1991.tb00080.x
[4]

Jayashree B, Pradeep R, Kumar A, Gopal B. 2008. Correlation between the sucrose synthase protein subfamilies, variations in structure and expression in stress-derived expressed sequence tag datasets. Journal of Proteomics & Bioinformatics 1(8):408−23

doi: 10.4172/jpb.1000050
[5]

Syamaladevi DP, Syamaladevi DP, Jayaraman N, Subramonian N. 2013. Evolutionary relationship between available homologous sequences of sucrose phosphate phosphatase (SPP) enzyme. Sugar Tech 15(2):136−44

doi: 10.1007/s12355-012-0198-1
[6]

Castleden CK, Aoki N, Gillespie VJ, MacRae EA, Quick WP, et al. 2004. Evolution and function of the sucrose phosphate synthase gene families in wheat and other grasses. Plant Physiology 135(3):1753−64

doi: 10.1104/pp.104.042457
[7]

Botha FC, Black KG. 2000. Sucrose phosphate synthase and sucrose synthase activity during maturation of internodal tissue in sugarcane. Functional Plant Biology 27:81−85

doi: 10.1071/PP99098
[8]

Wang D, Zhao J, Hu B, Li J, Qin Y, et al. 2018. Identification and expression profile analysis of the sucrose phosphate synthase gene family in Litchi chinensis Sonn. PeerJ 15(6):e4379

doi: 10.7717/peerj.4379
[9]

Vimolmangkang S, Zheng H, Peng Q, Jiang Q, Wang H, et al. 2016. Assessment of sugar components and genes involved in the regulation of sucrose accumulation in peach fruit. Journal of Agricultural and Food Chemistry 64(35):6723−29

doi: 10.1021/acs.jafc.6b02159
[10]

Huang T, Luo X, Wei M, Shan Z, Zhu Y, et al. 2020. Molecular cloning and expression analysis of sucrose phosphate synthase genes in cassava (Manihot esculenta Crantz). Scientific Reports 10(1):20707

doi: 10.1038/s41598-020-77669-9
[11]

Okamura M, Aoki N, Hirose T, Yonekura M, Ohto C, et al. 2011. Tissue specificity and diurnal change in gene expression of the sucrose phosphate synthase gene family in rice. Plant Science 181(2):159−66

doi: 10.1016/j.plantsci.2011.04.019
[12]

Jiang SY, Chi YH, Wang JZ, Zhou JX, Cheng YS, et al. 2015. Sucrose metabolism gene families and their biological functions. Scientific Reports 5:17583

doi: 10.1038/srep17583
[13]

Ma P, Zhang X, Chen L, Zhao Q, Zhang Q, et al. 2020. Comparative analysis of sucrose phosphate synthase (SPS) gene family between Saccharum officinarum and Saccharum spontaneum. BMC Plant Biology 20(1):422

doi: 10.1186/s12870-020-02599-7
[14]

Volkert K, Debast S, Voll LM, Voll H, Schießl I, et al. 2014. Loss of the two major leaf isoforms of sucrose-phosphate synthase in Arabidopsis thaliana limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis. Journal of Experimental Botany 65(18):5217−29

doi: 10.1093/jxb/eru282
[15]

Bahaji A, Baroja-Fernández E, Ricarte-Bermejo A, Sánchez-López ÁM, Muñoz FJ, et al. 2015. Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis. Plant Science 238:135−47

doi: 10.1016/j.plantsci.2015.06.009
[16]

Zhang LH, Zhu LC, Xu Y, Lü L, Li XG, et al. 2023. Genome-wide identification and function analysis of the sucrose phosphate synthase MdSPS gene family in apple. Journal of Integrative Agriculture 22(7):2080−93

doi: 10.1016/j.jia.2023.05.024
[17]

Bilska-Kos A, Mytych J, Suski S, Magoń J, Ochodzki P, et al. 2020. Sucrose phosphate synthase (SPS), sucrose synthase (SUS) and their products in the leaves of Miscanthus × giganteus and Zea mays at low temperature. Planta 252(2):23

doi: 10.1007/s00425-020-03421-2
[18]

Lunn JE, Ashton AR, Hatch MD, Heldt HW. 2000. Purification, molecular cloning, and sequence analysis of sucrose-6F-phosphate phosphohydrolase from plants. Proceedings of the National Academy of Sciences of United States of America 97(23):12914−19

doi: 10.1073/pnas.230430197
[19]

Lunn JE. 2003. Sucrose-phosphatase gene families in plants. Gene 303:187−96

doi: 10.1016/S0378-1119(02)01177-0
[20]

Jing F, Miao Y, Zhang P, Chen T, Liu Y, et al. 2022. Characterization of TaSPP-5A gene associated with sucrose content in wheat (Triticum aestivum L.). BMC Plant Biology 22(1):58

doi: 10.1186/s12870-022-03442-x
[21]

Chen S, Hajirezaei M, Peisker M, Tschiersch H, Sonnewald U, Börnke F. 2005. Decreased sucrose-6-phosphate phosphatase level in transgenic tobacco inhibits photosynthesis, alters carbohydrate partitioning, and reduces growth. Planta 221(4):479−92

doi: 10.1007/s00425-004-1458-4
[22]

Cao S, Yang Z, Zheng Y. Sugar metabolism in relation to chilling tolerance of loquat fruit. Food Chemistry 136(1): 139-43

[23]

Van den Ende W, Valluru R. 2008. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? Journal of Experimental Botany 60(1):9−18

doi: 10.1093/jxb/ern297
[24]

Qian W, Xiao B, Wang L, Hao X, Yue C, et al. 2018. CsINV5, a tea vacuolar invertase gene enhances cold tolerance in transgenic Arabidopsis. BMC Plant Biology 18(1):228

doi: 10.1186/s12870-018-1456-5
[25]

Qian W, Yue C, Wang Y, Cao H, Li N, et al. 2016. Identification of the invertase gene family (INVs) in tea plant and their expression analysis under abiotic stress. Plant Cell Reports 35(11):1−15

doi: 10.1007/s00299-016-2033-8
[26]

Li NN, Qian WJ, Wang L, Cao HL, Hao XY, et al. 2017. Isolation and expression features of hexose kinase genes under various abiotic stresses in the tea plant (Camellia sinensis). Journal of Plant Physiology 209:95−104

doi: 10.1016/j.jplph.2016.11.007
[27]

Wang L, Yao L, Hao X, Li N, Qian W, et al. 2018. Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis. Plant Molecular Biology 96(6):577−92

doi: 10.1007/s11103-018-0716-y
[28]

Jiang L, Song C, Zhu X, Yang J. 2021. SWEET transporters and the potential functions of these sequences in tea (Camellia sinensis). Frontiers in Genetics 12:655843

doi: 10.3389/fgene.2021.655843
[29]

Zhu Z. 2011. Screening of physiological indexes of cold resistance and Establishment of the method for identifying cold resistance in Camellia sinensis. Thesis. Anhui Agricultural University, Hefei, China. 58 pp.

[30]

Ding F. 2012. Cloning and expression of genes related to glycometabolism in tea plant(Camellia sinensis (L.) O. Kuntze) under low temperature. Thesis. Anhui Agricultural University, Hefei, China. 55 pp.

[31]

Yang X, Huang X, Han X, Liu T, Yue X, et al. 2020. Effect of exogenous substances on cold tolerance and key sucrose metabolic gene expression in Camellia sinensis. Chinese Bulletin of Botany 55:21−30

doi: 10.11983/CBB19024
[32]

Cheng Y, Ban Q, Mao J, Lin M, Zhu X, et al. 2023. Integrated metabolomic and transcriptomic analysis reveals that amino acid biosynthesis may determine differences in cold-tolerant and cold-sensitive tea cultivars. International Journal of Molecular Sciences 24(3):1907

doi: 10.3390/ijms24031907
[33]

Xia E, Tong W, Hou Y, An Y, Chen L, et al. 2020. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into genome evolution and adaptation. Molecular Plant 13(7):1013−26

doi: 10.1016/j.molp.2020.04.010
[34]

Zhang Y, Zhu X, Chen X, Song C, Zou Z, et al. 2014. Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis. BMC Plant Biology 14:271

doi: 10.1186/s12870-014-0271-x
[35]

Wang H, Ding Z, Gou M, Hu J, Wang Y, et al. 2021. Genome-wide identification, characterization, and expression analysis of tea plant autophagy-related genes (CsARGs) demonstrates that they play diverse roles during development and under abiotic stress. BMC Genomics 22(1):121

doi: 10.1186/s12864-021-07419-2
[36]

Li B, He S, Zheng Y, Wang Y, Lang X, et al. 2022. Genome-wide identification and expression analysis of the calmodulin-binding transcription activator (CAMTA) family genes in tea plant. BMC Genomics 23:667

doi: 10.1186/s12864-022-08894-x
[37]

Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, et al. 2007. The Pfam protein families database. Nucleic Acids Research 36:D281−D288

doi: 10.1093/nar/gkm960
[38]

Zhang X, Chen S, Shi L, Gong D, Zhang S, et al. 2021. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nature Genetics 53(8):1250−59

doi: 10.1038/s41588-021-00895-y
[39]

Wang P, Yu J, Jin S, Chen S, Yue C, et al. 2021. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Horticulture Research 8(1):107

doi: 10.1038/s41438-021-00542-x
[40]

Letunic I, Khedkar S, Bork P. 2021. SMART: recent updates, new developments and status in 2020. Nucleic Acids Research 49:D458−D460

doi: 10.1093/nar/gkaa937
[41]

Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, et al. 2020. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Research 48:D265−D268

doi: 10.1093/nar/gkz991
[42]

Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, et al. 1999. Protein identification and analysis tools in the exPASy server. Methods in Molecular Biology 112:531−52

doi: 10.1385/1-59259-584-7:531
[43]

Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, et al. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology 37(4):420−23

doi: 10.1038/s41587-019-0036-z
[44]

Krogh A, Larsson B, von HeijneG, Sonnhammer ELL. 2001. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. Journal of Molecular Biology 305(3):567−80

doi: 10.1006/jmbi.2000.4315
[45]

Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, et al. 2019. Detecting novel sequence signals in targeting peptides using deep learning. Life Science Alliance 2(5):e201900429

doi: 10.26508/lsa.201900429
[46]

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7):1870−74

doi: 10.1093/molbev/msw054
[47]

Subramanian B, Gao S, Lercher MJ, Hu S, Chen WH. 2019. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Research 47(W1):W270−W275

doi: 10.1093/nar/gkz357
[48]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13(8):1194−202

doi: 10.1016/j.molp.2020.06.009
[49]

CNCB-NGDC Members and Partners. 2022. Database resources of the national genomics data center, china national center for bioinformation in 2022. Nucleic Acids Research 50(D1):D27−D38

doi: 10.1093/nar/gkab951
[50]

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30(1):325−27

doi: 10.1093/nar/30.1.325
[51]

Xia EH, Li FD, Tong W, Li PH, Wu Q, et al. 2019. Tea Plant Information Archive: a comprehensive genomics and bioinformatics platform for tea plant. Plant Biotechnology Journal 17(10):1938−53

doi: 10.1111/pbi.13111
[52]

Zhang R, Ma Y, Hu X, Chen Y, He X, et al. 2020. TeaCoN: a database of gene co-expression network for tea plant (Camellia sinensis). BMC Genomics 21:461

doi: 10.1186/s12864-020-06839-w
[53]

Hao X, Horvath DP, Chao WS, Yang Y, Wang X, Xiao B. 2014. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). International Journal of Molecular Sciences 15(12):22155−72

doi: 10.3390/ijms151222155
[54]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ Method. Methods 25(4):402−8

doi: 10.1006/meth.2001.1262
[55]

Wang L, Yao L, Hao X, Li N, Wang Y, et al. 2019. Transcriptional and physiological analyses reveal the association of ROS metabolism with cold tolerance in tea plant. Environmental and Experimental Botany 160:45−58

doi: 10.1016/j.envexpbot.2018.11.011
[56]

Cumino A, Curatti L, Giarrocco L, Salerno GL. 2002. Sucrose metabolism: Anabaena sucrose-phosphate synthase and sucrose-phosphate phosphatase define minimal functional domains shuffled during evolution. FEBS Letters 517(1-3):19−23

doi: 10.1016/S0014-5793(02)02516-4
[57]

Chua TK, Bujnicki JM, Tan TC, Huynh F, Patel BK, et al. 2008. The structure of sucrose phosphate synthase from Halothermothrix orenii reveals its mechanism of action and binding mode. Plant Cell 20(4):1059−72

doi: 10.1105/tpc.107.051193
[58]

Quy LV, Champigny ML. 1992. NO3 enhances the kinase activity for phosphorylation of phosphoenolpyruvate carboxylase and sucrose phosphate synthase proteins in wheat leaves. Plant Physiology 99(1):344−47

doi: 10.1104/pp.99.1.344
[59]

Huber SC, Toroser D, Winter H, Athwal GS, Huber JL. 1998. Metabolic enzymes as targets for 14-3-3 proteins. Plant Molecular Biology 50(6):1053−63

doi: 10.1023/a:1021284002779
[60]

Huber SC, Huber JL. 1996. Role and regulation of sucrose-phosphate synthase in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 47:431−44

doi: 10.1146/annurev.arplant.47.1.431
[61]

Partida VGS, Dias HM, Corcino DSM, Van Sluys MA. 2021. Sucrose-phosphate phosphatase from sugarcane reveals an ancestral tandem duplication. BMC Plant Biology 21(1):23

doi: 10.1186/s12870-020-02795-5
[62]

Echeverría E, Salerno G. 1994. Properties of sucrose-phosphate phosphatase from rice (Oryza sativa) leaves. Plant Science 96:15−19

doi: 10.1016/0168-9452(94)90217-8
[63]

Whitaker DP. 1984. Purification and properties of sucrose-6-phosphatase from Pisum sativum shoots. Phytochemistry 23(11):2429−30

doi: 10.1016/S0031-9422(00)84069-8
[64]

Echeverria E, Salvucci ME, Gonzalez P, Paris G, Salerno G. 1997. Physical and kinetic evidence for an association between sucrose-phosphate synthase and sucrose-phosphate phosphatase. Plant Physiology 115(1):223−27

doi: 10.1104/pp.115.1.223
[65]

Victoria JM, Ji-Young P, Faride U, Shawn DM. 2015. Sucrose phosphate synthase and sucrose phosphate phosphatase interact in planta and promote plant growth and biomass accumulation. Journal of Experimental Botany 66(14):4383−94

doi: 10.1093/jxb/erv101
[66]

Anur RM, Mufithah N, Sawitri WD, Sakakibara H, Sugiharto B. 2020. Overexpression of sucrose phosphate synthase enhanced sucrose content and biomass production in transgenic sugarcane. Plants 9(2):200

doi: 10.3390/plants9020200
[67]

Micallef BJ, Haskins KA, Vanderveer PJ, Roh KS, Shewmaker CK, et al. 1995. Altered photosynthesis, flowering, and fruiting in transgenic tomato plants that have an increased capacity for sucrose synthesis. Planta 196:327−34

doi: 10.1007/BF00201392
[68]

Babb VM, Haigler CH. 2001. Sucrose phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems. Plant Physiology 127(3):1234−42

doi: 10.1104/pp.010424
[69]

He S, Li B, Wang H, Liang S, Ding Z, et al. 2023. Characterization of invertase inhibitors (InvInhs) in tea plant, and their potential roles in participating in growth, development and cold response. Scientia Horticulturae 308:111580

doi: 10.1016/j.scienta.2022.111580
[70]

Van Doorn WG. 2008. Is the onset of senescence in leaf cells of intact plants due to low or high sugar levels? 2008. Journal of Experimental Botany 59(8):1963−72

doi: 10.1093/jxb/ern076
[71]

Asim M, Hussain Q, Wang X, Sun Y, Liu H, et al. 2022. Mathematical modeling reveals that sucrose regulates leaf senescence via dynamic sugar signaling pathways. International Journal of Molecular Sciences 23(12):6498

doi: 10.3390/ijms23126498
[72]

Wan H, Wu L, Yang Y, Zhou G, Ruan YL. 2018. Evolution of sucrose metabolism: the dichotomy of invertases and beyond. Trends in Plant Science 23:163−77

doi: 10.1016/j.tplants.2017.11.001
[73]

Rosa M, Prado C, Podazza G, Interdonato R, González JA, et al. 2009. Soluble sugars - metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signaling & Behavior 4(5):388−93

doi: 10.4161/psb.4.5.8294
[74]

Geigenberger P, Reimholz R, Deiting U, Sonnewald U, Stitt M. 1999. Decreased expression of sucrose phosphate synthase strongly inhibits the water stress-induced synthesis of sucrose in growing potato tubers. Plant Journal 19(2):119−29

doi: 10.1046/j.1365-313x.1999.00506.x
[75]

Guy CL, Huber JLA, Huber SC. 1992. Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiology 100(1):502−8

doi: 10.1104/pp.100.1.502
[76]

Fresneau C, Ghashghaie J, Cornic G. 2007. Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat (Triticum durum L.): role of leaf internal CO2. Journal of Experimental Botany 58(11):2983−92

doi: 10.1093/jxb/erm150
[77]

Bagnato L, Tosato E, Gurrieri L, Trost P, Forlani G, et al. 2023. Arabidopsis thaliana sucrose phosphate synthase A2 affects carbon partitioning and drought response. Biology 12(5):685

doi: 10.3390/biology12050685
[78]

Li NN, Yue C, Cao HL, Qian WJ, Hao XY, et al. 2018. Transcriptome sequencing dissection of the mechanisms underlying differential cold sensitivity in young and mature leaves of the tea plant (Camellia sinensis). Journal of Plant Physiology 224-225:144−55

doi: 10.1016/j.jplph.2018.03.017
[79]

Wang XC, Zhao QY, Ma CL, Zhang ZH, Cao HL, et al. 2013. Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14(1):415

doi: 10.1186/1471-2164-14-415
[80]

Liu SC, Jin JQ, Ma JQ, Yao MZ, Ma CL, et al. 2016. Transcriptomic analysis of tea plant responding to drought stress and recovery. PLoS One 11(1):e0147306

doi: 10.1371/journal.pone.0147306
[81]

Zhang Q, Cai M, Yu X, Wang L, Guo C, et al. 2017. Transcriptome dynamics of Camellia sinensis in response to continuous salinity and drought stress. Tree Genetics & Genomes 13(4):78

doi: 10.1007/s11295-017-1161-9
[82]

Yue C, Cao HL, Wang L, Zhou YH, Huang YT, et al. 2015. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. Plant Molecular Biology 88(6):591−608

doi: 10.1007/s11103-015-0345-7
[83]

Yao L, Ding C, Hao X, Zeng J, Yang Y, et al. 2020. CsSWEET1a and CsSWEET17 mediate growth and freezing tolerance by promoting sugar transport across the plasma membrane. Plant & Cell Physi ology 61(9):1669−82

doi: 10.1093/pcp/pcaa091
[84]

Garab G. 1999. Photosynthesis: mechanisms and effects. Proceedings of the XIth International Congress on Photosynthesis, Budapest, Hungary, August 17–22, 1998. I-V: 1−53. Budapust: Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3953-3

[85]

Almadanim MC, Alexandre BM, Rosa MTG, Sapeta H, Leitão AE, et al. 2017. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response. Plant Cell & Environment 40(7):1197−213

doi: 10.1111/pce.12916
[86]

Ding C, Lei L, Yao N, Wang L, Hao X, et al. 2019. The involvements of calcium-dependent protein kinases and catechins in tea plant [Camellia sinensis (L.) O. Kuntze] cold responses. Plant Physiology and Biochemistry 143:190−202

doi: 10.1016/j.plaphy.2019.09.005
[87]

Shen J, Xu Y, Yuan S, Jin F, Huang Y, et al. 2023. Genome-wide identification of GmSPS gene family in soybean and expression analysis in response to cold stress. International Journal of Molecular Sciences 24(16):12878

doi: 10.3390/ijms241612878