[1] |
Vanderplank J. 1991. Passion flowers and passion fruit. London, UK: Cassell Publishers Limited. |
[2] |
Ulmer T, MacDougal JM. 2004. Passiflora: passionflowers of the world. Oregon, USA: Timber Press (OR). |
[3] |
Winterhalter P. 1990. Bound terpenoids in the juice of the purple passion fruit (Passiflora edulis Sims). Journal of Agricultural and Food Chemistry 38:452−55 doi: 10.1021/jf00092a026 |
[4] |
Coleta M, Batista MT, Campos MG, Carvalho R, Cotrim MD, et al. 2006. Neuropharmacological evaluation of the putative anxiolytic effects of Passiflora edulis Sims, its sub-fractions and flavonoid constituents. Phytotherapy Research 20:1067−73 doi: 10.1002/ptr.1997 |
[5] |
Deng J, Zhou Y, Bai M, Li H, Li L. 2010. Anxiolytic and sedative activities of Passiflora edulis f. flavicarpa. Journal of Ethnopharmacology 128:148−53 doi: 10.1016/j.jep.2009.12.043 |
[6] |
Gadioli IL, da Cunha MdSB, de Carvalho MVO, Costa AM, Pineli LdLdO. 2018. A systematic review on phenolic compounds in Passiflora plants: Exploring biodiversity for food, nutrition, and popular medicine. Critical Reviews in Food Science and Nutrition 58:785−807 doi: 10.1080/10408398.2016.1224805 |
[7] |
Abreu PP, Souza MM, Santos EA, Pires MV, Pires MM, et al. 2009. Passion flower hybrids and their use in the ornamental plant market: perspectives for sustainable development with emphasis on Brazil. Euphytica 166:307−15 doi: 10.1007/s10681-008-9835-x |
[8] |
Thokchom R, Mandal G. 2017. Production preference and importance of passion fruit (Passiflora edulis): A review. Journal of Agricultural Engineering and Food Technology 4:27−30 |
[9] |
Riechmann JL, Ratcliffe OJ. 2000. A genomic perspective on plant transcription factors. Current opinion in plant biology 3:423−34 doi: 10.1016/S1369-5266(00)00107-2 |
[10] |
Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, et al. 2000. A short history of MADS-box genes in plants. Plant Molecular Biology 42(1):115−49 doi: 10.1023/A:1006332105728 |
[11] |
Honma T, Goto K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525−29 doi: 10.1038/35054083 |
[12] |
Ng M, Yanofsky MF. 2001. Function and evolution of the plant MADS-box gene family. Nature Reviews Genetics 2:186−95 doi: 10.1038/35056041 |
[13] |
Saedler H, Becker A, Winter KU, Kirchner C, Theißen G. 2001. MADS-box genes are involved in floral development and evolution. Acta Biochimica Polonica 48:351−58 doi: 10.18388/abp.2001_3920 |
[14] |
Smaczniak C, Immink RGH, Angenent GC, Kaufmann K. 2012. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139:3081−98 doi: 10.1242/dev.074674 |
[15] |
Bloomer RH, Dean C. 2017. Fine-tuning timing: natural variation informs the mechanistic basis of the switch to flowering in Arabidopsis thaliana. Journal of Experimental Botany 68:5439−52 doi: 10.1093/jxb/erx270 |
[16] |
Callens C, Tucker MR, Zhang D, Wilson ZA. 2018. Dissecting the role of MADS-box genes in monocot floral development and diversity. Journal of Experimental Botany 69:2435−59 doi: 10.1093/jxb/ery086 |
[17] |
Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, et al. 2000. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proceedings of the National Academy of Sciences of the United States of America 97:5328−33 doi: 10.1073/pnas.97.10.5328 |
[18] |
Par̆enicová L, de Folter S, Kieffer M, Horner DS, Favalli C, et al. 2003. Molecular and Phylogenetic Analyses of the Complete MADS-Box Transcription Factor Family in Arabidopsis: New Openings to the MADS World. The Plant Cell 15:1538−51 doi: 10.1105/tpc.011544 |
[19] |
Becker A, Theißen G. 2003. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution 29:464−89 doi: 10.1016/S1055-7903(03)00207-0 |
[20] |
Nam J, Kim J, Lee S, An G, Ma H, et al. 2004. Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proceedings of the National Academy of Sciences 101:1910−15 doi: 10.1073/pnas.0308430100 |
[21] |
Kaufmann K, Melzer R, Theißen G. 2005. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347:183−98 doi: 10.1016/j.gene.2004.12.014 |
[22] |
Coen ES, Meyerowitz EM. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353:31−37 doi: 10.1038/353031a0 |
[23] |
Zahn LM, Feng B, Ma H. 2006. Beyond the ABC-model: regulation of floral homeotic genes. Advances in Botanical Research 44:163−207 doi: 10.1016/S0065-2296(06)44004-0 |
[24] |
Angenent GC, Colombo L. 1996. Molecular control of ovule development. Trends in Plant Science 1:228−32 doi: 10.1016/1360-1385(96)86900-7 |
[25] |
Dreni L, Kater MM. 2014. MADS reloaded: evolution of the AGAMOUS subfamily genes. New Phytologist 201:717−32 doi: 10.1111/nph.12555 |
[26] |
Gustafson-Brown C. 1996. Characterization of the Arabidopsis floral homeotic gene APETALA1. Thesis. University of California, San Diego |
[27] |
Jack T, Brockman LL, Meyerowitz EM. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68:683−97 doi: 10.1016/0092-8674(92)90144-2 |
[28] |
Goto K, Meyerowitz EM. 1994. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes & Development 8:1548−60 doi: 10.1101/gad.8.13.1548 |
[29] |
Hugouvieux V, Silva CS, Jourdain A, Stigliani A, Charras Q, et al. 2018. Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis. Nucleic Acids Research 46:4966−77 doi: 10.1093/nar/gky205 |
[30] |
Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, et al. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85−88 doi: 10.1038/nature01741 |
[31] |
Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200−3 doi: 10.1038/35012103 |
[32] |
Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF. 2004. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biology 14:1935−40 doi: 10.1016/j.cub.2004.10.028 |
[33] |
Ruelens P, Zhang Z, van Mourik H, Maere S, Kaufmann K, et al. 2017. The origin of floral organ identity quartets. The Plant Cell 29:229−42 doi: 10.1105/tpc.16.00366 |
[34] |
Seo E, Lee H, Jeon J, Park H, Kim J, et al. 2009. Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. The Plant Cell 21:3185−97 doi: 10.1105/tpc.108.063883 |
[35] |
Li D, Liu C, Shen L, Wu Y, Chen H, et al. 2008. A repressor complex governs the integration of flowering signals in Arabidopsis. Developmental Cell 15:110−20 doi: 10.1016/j.devcel.2008.05.002 |
[36] |
Tapia-López R, García-Ponce B, Dubrovsky JG, Garay-Arroyo A, Pérez-Ruíz RV, et al. 2008. An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiology 146:1182−92 doi: 10.1104/pp.107.108647 |
[37] |
Yu LH, Miao ZQ, Qi GF, Wu J, Cai XT, et al. 2014. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals. Molecular Plant 7:1653−69 doi: 10.1093/mp/ssu088 |
[38] |
Dreni L, Zhang D. 2016. Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes. Journal of Experimental Botany 67:1625−38 doi: 10.1093/jxb/erw046 |
[39] |
Ferrándiz C, Liljegren SJ, Yanofsky MF. 2000. Negative Regulation of the SHATTERPROOF Genes by FRUITFULL During Arabidopsis Fruit Development. Science 289:436−38 doi: 10.1126/science.289.5478.436 |
[40] |
Zheng Y, Liu M, Jia C, Wang J, Xu B, et al. 2020. Characteristics of banana B genome MADS-box family demonstrate their roles in fruit development, ripening, and stress. Scientific Reports 10:20840 doi: 10.1038/s41598-020-77870-w |
[41] |
Wang Y, Zhang J, Hu Z, Guo X, Tian S, Chen G. 2019. Genome-wide analysis of the MADS-Box transcription factor family in Solanum lycopersicum. International Journal of Molecular Sciences 20:2961 doi: 10.3390/ijms20122961 |
[42] |
Wang P, Wang S, Chen Y, Xu X, Guang X, et al. 2019. Genome-wide analysis of the MADS-Box gene family in watermelon. Comput Biol Chem 80:341−50 doi: 10.1016/j.compbiolchem.2019.04.013 |
[43] |
Sheng XG, Zhao ZQ, Wang JS, Yu HF, Shen YS, et al. 2019. Genome wide analysis of MADS-box gene family in Brassica oleracea reveals conservation and variation in flower development. BMC Plant Biology 19:106 doi: 10.1186/s12870-019-1717-y |
[44] |
Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, et al. 2018. HMMER web server: 2018 update. Nucleic Acids Research 46:W200−W204 doi: 10.1093/nar/gky448 |
[45] |
Letunic I, Khedkar S, Bork P. 2021. SMART: recent updates, new developments and status in 2020. Nucleic acids research 49:D458−D460 doi: 10.1093/nar/gkaa937 |
[46] |
Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, et al. 2011. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Research 39:D225−D229 doi: 10.1093/nar/gkq1189 |
[47] |
Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, et al. 2003. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic acids research 31:3784−88 doi: 10.1093/nar/gkg563 |
[48] |
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research 32:1792−97 doi: 10.1093/nar/gkh340 |
[49] |
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189−91 doi: 10.1093/bioinformatics/btp033 |
[50] |
Katoh K, Standley DM. 2013. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution 30:772−80 doi: 10.1093/molbev/mst010 |
[51] |
Chernomor O, von Haeseler A, Minh BQ. 2016. Terrace Aware Data Structure for Phylogenomic Inference from Supermatrices. Systematic Biology 65:997−1008 doi: 10.1093/sysbio/syw037 |
[52] |
He Z, Zhang H, Gao S, Lercher MJ, Chen W-H, Hu S. 2016. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Research 44:W236−W241 doi: 10.1093/nar/gkw370 |
[53] |
Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME Suite. Nucleic Acids Research 43:W39−W49 doi: 10.1093/nar/gkv416 |
[54] |
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009 |
[55] |
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27 doi: 10.1093/nar/30.1.325 |
[56] |
Wang Y, Tang H, DeBarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49−e49 doi: 10.1093/nar/gkr1293 |
[57] |
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, et al. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research 46:W296−W303 doi: 10.1093/nar/gky427 |
[58] |
DeLano WL. 2002. Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography 40:82−92 |
[59] |
Chen P, Li Y, Zhao L, Hou Z, Yan M, et al. 2017. Genome-wide identification and expression profiling of ATP-binding cassette (ABC) transporter gene family in pineapple (Ananas comosus (L.) Merr.) reveal the role of AcABCG38 in pollen development. Frontiers in plant science 8:2150 doi: 10.3389/fpls.2017.02150 |
[60] |
Wu Y, Tian Q, Huang W, Liu J, Xia X, et al. 2020. Identification and evaluation of reference genes for quantitative real-time PCR analysis in Passiflora edulis under stem rot condition. Molecular Biology Reports 47:2951−62 doi: 10.1007/s11033-020-05385-8 |
[61] |
Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, et al. 2005. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook, ed. Walker JM. Totowa, NJ: Humana Press. pp. 571−607. https://doi.org/10.1385/1-59259-890-0:571 |
[62] |
Arora R, Agarwal P, Ray S, Singh AK, Singh VP, et al. 2007. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242 doi: 10.1186/1471-2164-8-242 |
[63] |
Díaz-Riquelme J, Lijavetzky D, Martínez-Zapater JM, Carmona MJ. 2008. Genome-wide analysis of MIKCC-type MADS box genes in grapevine. Plant Physiology 149:354−69 doi: 10.1104/pp.108.131052 |
[64] |
Liu J, Fu X, Dong Y, Lu J, Ren M, et al. 2018. MIKCC-type MADS-box genes in Rosa chinensis: the remarkable expansion of ABCDE model genes and their roles in floral organogenesis. Horticulture Research 5:25 doi: 10.1038/s41438-018-0031-4 |
[65] |
Xie T, Chen C, Li C, Liu J, Liu C, et al. 2018. Genome-wide investigation of WRKY gene family in pineapple: evolution and expression profiles during development and stress. BMC Genomics 19:490 doi: 10.1186/s12864-018-4880-x |
[66] |
Han A, Pan F, Stroud JC, Youn HD, Liu JO, et al. 2003. Sequence-specific recruitment of transcriptional co-repressor Cabin1 by myocyte enhancer factor-2. Nature 422:730−34 doi: 10.1038/nature01555 |
[67] |
Lai X, Daher H, Galien A, Hugouvieux V, Zubieta C. 2019. Structural basis for plant MADS transcription factor oligomerization. Computational and Structural Biotechnology Journal 17:946−53 doi: 10.1016/j.csbj.2019.06.014 |
[68] |
Theißen G. 2001. Development of floral organ identity: stories from the MADS house. Current Opinion in Plant Biology 4:75−85 doi: 10.1016/S1369-5266(00)00139-4 |
[69] |
Chang YS, Cheng CY. 1992. Effects of temperature and light on growth and flower formation of passionfruit. Journal of the Chinese Society for Horticultural Science 38:30−36 |
[70] |
Liu FY, Peng YL, Chang YS. 2015. Effects of temperature and ethylene response inhibitors on growth and flowering of passion fruit. Horticultural Science and Technology 33:356−63 doi: 10.7235/hort.2015.13111 |
[71] |
Nam J, DePamphilis CW, Ma H, Nei M. 2003. Antiquity and evolution of the MADS-box gene family controlling flower development in plants. Molecular Biology and Evolution 20:1435−47 doi: 10.1093/molbev/msg152 |
[72] |
Guo H, Lee TH, Wang X, Paterson AH. 2013. Function relaxation followed by diversifying selection after whole-genome duplication in flowering plants. Plant Physiology 162:769−78 doi: 10.1104/pp.112.213447 |
[73] |
de Folter S, Immink RGH, Kieffer M, Pařenicová L, Henz SR, et al. 2005. Comprehensive interaction map of the Arabidopsis MADS box transcription factors. The Plant Cell 17:1424−33 doi: 10.1105/tpc.105.031831 |
[74] |
Melzer R, Theißen G. 2009. Reconstitution of 'floral quartets' in vitro involving class B and class E floral homeotic proteins. Nucleic Acids Research 37:2723−36 doi: 10.1093/nar/gkp129 |
[75] |
Theißen G, Saedler H. 2001. Floral quartets. Nature 409:469−71 doi: 10.1038/35054172 |
[76] |
Ó'Maoiléidigh DS, Graciet E, Wellmer F. 2014. Gene networks controlling Arabidopsis thaliana flower development. New Phytologist 201:16−30 doi: 10.1111/nph.12444 |
[77] |
Gong P, Song C, Liu H, Li P, Zhang M, et al. 2021. Physalis floridana CRABS CLAW mediates neofunctionalization of GLOBOSA genes in carpel development. Journal of Experimental Botany 72:6882−903 doi: 10.1093/jxb/erab309 |
[78] |
Zhang L, Chen F, Zhang X, Li Z, Zhao Y, et al. 2020. The water lily genome and the early evolution of flowering plants. Nature 577:79−84 doi: 10.1038/s41586-019-1852-5 |
[79] |
Zahn LM, Leebens-Mack J, dePamphilis CW, Ma H, Theissen G. 2005. To B or Not to B a flower: The Role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. Journal of Heredity 96:225−40 doi: 10.1093/jhered/esi033 |
[80] |
Tsai WC, Pan ZJ, Hsiao YY, Chen LJ, Liu ZJ. 2014. Evolution and function of MADS-box genes involved in orchid floral development. Journal of Systematics and Evolution 52:397−410 doi: 10.1111/jse.12010 |
[81] |
Li H, Liang W, Jia R, Yin C, Zong J, et al. 2010. The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Research 20:299−313 doi: 10.1038/cr.2009.143 |
[82] |
Fan J, Li W, Dong X, Guo W, Shu H. 2007. Ectopic expression of a hyacinth AGL6 homolog caused earlier flowering and homeotic conversion in Arabidopsis. Science in China Series C: Life Sciences 50:676−89 doi: 10.1007/s11427-007-0083-4 |
[83] |
Tsuchimoto S, Mayama T, Van Der Krol A, Ohtsubo E. 2000. The whorl-specific action of a petunia class B floral homeotic gene. Genes to Cells 5:89−99 doi: 10.1046/j.1365-2443.2000.00308.x |
[84] |
Reinheimer R, Kellogg EA. 2009. Evolution of AGL6-like MADS box genes in grasses (Poaceae): Ovule expression is ancient and palea expression is new. The Plant Cell 21:2591−605 doi: 10.1105/tpc.109.068239 |
[85] |
Becker A, Kaufmann K, Freialdenhoven A, Vincent C, Li MA, et al. 2002. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes. Molecular Genetics and Genomics 266:942−50 doi: 10.1007/s00438-001-0615-8 |
[86] |
Yamada K, Saraike T, Shitsukawa N, Hirabayashi C, Takumi S, Murai K. 2009. Class D and Bsister MADS-box genes are associated with ectopic ovule formation in the pistil-like stamens of alloplasmic wheat (Triticum aestivum L.). Plant Molecular Biology 71:1−14 doi: 10.1007/s11103-009-9504-z |
[87] |
Kwantes M, Liebsch D, Verelst W. 2012. How MIKC* MADS-box genes originated and evidence for their conserved function throughout the evolution of vascular plant gametophytes. Molecular Biology and Evolution 29:293−302 doi: 10.1093/molbev/msr200 |
[88] |
Hemingway CA, Christensen AR, Malcomber ST. 2011. B- and C-class gene expression during corona development of the blue passionflower (Passiflora caerulea, Passifloraceae). American Journal of Botany 98:923−34 doi: 10.3732/ajb.1100026 |
[89] |
Moon J, Suh SS, Lee H, Choi K-R, Hong CB, et al. 2003. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. The Plant Journal 35:613−23 doi: 10.1046/j.1365-313X.2003.01833.x |
[90] |
Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES. 2000. The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC). Proceedings of the National Academy of Sciences of the United States of America 97:3753−58 doi: 10.1073/pnas.97.7.3753 |
[91] |
Castelán-Muñoz N, Herrera J, Cajero-Sánchez W, Arrizubieta M, Trejo C, et al. 2019. MADS-box genes are key components of genetic regulatory networks involved in abiotic stress and plastic developmental responses in plants. Frontiers in Plant Science 10:853 doi: 10.3389/fpls.2019.00853 |
[92] |
Rose JKC, Bennett AB. 1999. Cooperative disassembly of the cellulose–xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends in Plant Science 4:176−83 doi: 10.1016/S1360-1385(99)01405-3 |
[93] |
Scorza LCT, Hernandes-Lopes J, Melo-de-Pinna GFA, Dornelas MC. 2017. Expression patterns of Passiflora edulis APETALA1/FRUITFULL homologues shed light onto tendril and corona identities. EvoDevo 8:3 doi: 10.1186/s13227-017-0066-x |
[94] |
Liu J, Liu L, Li Y, Jia C, Zhang J, et al. 2015. Role for the banana AGAMOUS-like gene MaMADS7 in regulation of fruit ripening and quality. Physiologia Plantarum 155:217−31 doi: 10.1111/ppl.12348 |
[95] |
Liu J, Zhang J, Wang J, Zhang J, Miao H, et al. 2018. MuMADS1 and MaOFP1 regulate fruit quality in a tomato ovate mutant. Plant Biotechnology Journal 16:989−1001 doi: 10.1111/pbi.12843 |