[1]

Lebot V. 2008. Tropical root and tuber crops: cassava, sweet potato, yams, aroids. Oxfordshire: CABI International. https://doi.org/10.1079/9781845934248.0000

[2]

Howeler R, Lutaladio N, Thomas G. 2013. Save and grow: cassava, a guide to sustainable production intensification. Rome: FAO. pp. 1−129.

[3]

Ceballos H, Rojanaridpiched C, Phumichai C, Becerra LA, Kittipadakul P, et al. 2020. Excellence in Cassava breeding: Perspectives for the future. Crop Breeding, Genetic and Genomics 2(2):e200008

doi: 10.20900/cbgg20200008
[4]

Karlström A, Calle F, Salazar S, Morante N, Dufour D, et al. 2016. Biological implications in cassava for the production of amylose-free starch: Impact on root yield and related traits. Frontiers in Plant Science 7:604

doi: 10.3389/fpls.2016.00604
[5]

Olsen KM, Schaal BA. 1999. Evidence on the origin of cassava: Phylogeography of Manihot esculenta. Proceedings of the National Academy of Sciences of the United States of America 96:5586−91

doi: 10.1073/pnas.96.10.5586
[6]

Carter SE, Fresco LO, Jones PG, Fairbairn JN. 1997. Introduction and diffusion of cassava in Africa: IITA research guide, No. 49. Ibadan: International institute of tropical agriculture. pp. 1−34.

[7]

Ceballos H, Iglesias CA, Pérez JC, Dixon AGO. 2004. Cassava breeding: Opportunities and challenges. Molecular Biology 56:503−16

doi: 10.1007/s11103-004-5010-5
[8]

Hillocks RJ. 2002. Cassava in Africa. In Cassava: Biology, Production and Utilization, Hillocks RJ, Thresh JM, Bellotti AC. Wallingford, UK: CAB International. pp. 41–54.

[9]

Burns A, Gleadow R, Cliff J, Zacarias A, Cavagnaro T. 2010. Cassava: The drought, war and famine crop in a changing world. Sustainability 2:3572−607

doi: 10.3390/su2113572
[10]

Kamau JW. 2006. Participatory-based development of early bulking cassava varieties for the semi-arid areas of Eastern Kenya. Thesis. University of Wales, UK. pp 9−50.

[11]

Bokanga M. 1995. Cassava: Opportunities for the food, feed, and other industries in Africa. Transformation Alimentaire du Manioc 00:557−69

[12]

Munyahali W, Pypers P, Swennen R, Walangululu J, Vanlauwe B, et al. 2017. Responses of cassava growth and yield to leaf harvesting frequency and NPK fertilizer in South Kivu, Democratic Republic of Congo. Field Crops Research 214:194−201

doi: 10.1016/j.fcr.2017.09.018
[13]

Umuhozariho MG, Shayo NB, Msuya JM, Sallah PYK. 2011. Utilization of cassava leaves as a vegetable in Rwanda. Rwanda Journal 24:15−27

[14]

Latif S, Müller J. 2015. Potential of cassava leaves in human nutrition: A review. Trends in Food Science & Technology 44:147−58

doi: 10.1016/j.jpgs.2015.04.006
[15]

Eggum BO. 1970. The protein quality of cassava leaves. The British Journal of Nutrition 24:761−68

doi: 10.1079/BJN19700078
[16]

Ospina MA, Pizarro M, Tran T, Ricci J, Belalcazar J, et al. 2021. Cyanogenic, carotenoids and protein composition in leaves and roots across seven diverse population found in the world cassava germplasm collection at CIAT, Colombia. International Journal of Food Science & Technology 56:1343−53

doi: 10.1111/ijfs.14888
[17]

Food and Agriculture Organization of the United Nations. 2020. FAOSTAT Statistical Database www.fao.org/faostat/en/#data/QCL

[18]

El-Sharkawy MA. 2004. Cassava biology and physiology Cassava: a crop for sustainable agriculture and food security in developing countries. Plant Molecular Biology 56:481−501

doi: 10.1007/s11103-005-2270-7
[19]

Ntawuruhunga P, Ssemakula G, Ojulong H, Bua A, Ragama P. et al. 2006. Evaluation of advanced cassava genotypes in Uganda. African Crop Science Journal 14:17−25

[20]

Fermont AM, van Asten PJA, Tittonell P, van Wijk MT, Giller KE. 2009. Closing the cassava yield gap: An analysis from smallholder farms in East Africa. Field Crops Research 112:24−36

doi: 10.1016/j.fcr.2009.01.009
[21]

Kintché K, Hauser S, Mahungu NM, Ndonda A, Lukombo S, et al. 2017. Cassava yield loss in farmer fields was mainly caused by low soil fertility and suboptimal management practices in two provinces of the Democratic Republic of Congo. European Journal of Agronomy 89:107−23

doi: 10.1016/j.eja.2017.06.011
[22]

Pypers P, Sanginga JM, Kasereka B, Walangululu M, Vanlauwe B. 2011. Increased productivity through integrated soil fertility management in cassava-legume intercropping systems in the highlands of Sud-Kivu, DR Congo. Field Crops Research 120:76−85

doi: 10.1016/j.fcr.2010.09.004
[23]

Orek C, Gruissem W, Ferguson M, Vanderschuren H. 2020. Morpho-physiological and molecular evaluation of drought tolerance in cassava (Manihot esculenta Crantz). Field Crops Research 255:107861

doi: 10.1016/j.fcr.2020.107861
[24]

Lenis JI, Calle F, Jaramillo G, Perez JC, Ceballos H, et al. 2006. Leaf retention and cassava productivity. Field Crops Research 95:126−34

doi: 10.1016/j.fcr.2005.02.007
[25]

Koima IN, Orek CO. 2018. Response to cassava brown streak disease infections in local and improved cassava genotypes under field and greenhouse assays in lower eastern Kenya. International Journal of Pathogen Research 1:1−14

doi: 10.9734/ijpr/2018/v1i329616
[26]

Kanju EE, Masumba E, Masawe M, Tollano S, Mahungu N. 2007. Breeding cassava for brown streak resistance: Regional cassava variety development strategy based on farmer and consumer preferences. Proceedings of the 13th ISTRC Symposium, Arusha, Tanzania, 2007. Arusha: IITA. pp. 95–101. www.istrc.org/images/Documents/Symposiums/Thirteenth/p1_kanju.pdf

[27]

Legg JP, Lava Kumar P, Makeshkumar T, Tripathi L, Ferguson M, et al. 2015. Cassava virus diseases: Biology, epidemiology, and management. In Advances in Virus Research, eds. Loebenstein G, Katis NI. 1st Edition. Vol 91. Academic Press, Elsevier. pp. 85–142. https://doi.org/10.1016/bs.aivir.2014.10.001

[28]

IITA. 2014. Cassava varieties tolerant to deadly viral diseases shared across five countries. IITA Bulletin. 2215:1–3. www.iita.org/wp-content/uploads/2016/12/The-Bulletin-10-14-March-2014-No.-2215.pdf

[29]

Alicai T, Omongo CA, Maruthi MN, Hillocks RJ, Baguma Y, et al. 2007. Re-emergence of cassava brown streak disease in Uganda. Plant Disease 91:24−29

doi: 10.1094/PD-91-0024
[30]

Hillocks R, Maruthi M, Kulembeka H, Jeremiah S, Alacho F, et al. 2016. Disparity between leaf and root symptoms and crop losses associated with cassava brown streak disease in four countries in eastern Africa. Journal of Phytopathology 164:86−93

doi: 10.1111/jph.12430
[31]

Legg JP, Jeremiah SC, Obiero HM, Maruthi MN, Ndyetabula I, et al. 2011. Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa. Virus Research 159:161−70

doi: 10.1016/j.virusres.2011.04.018
[32]

Ndyetabula IL, Merumba SM, Jeremiah SC, Kasele S, Mkamilo GS, et al. 2016. Analysis of interactions between cassava brown streak disease symptom types facilitates the determination of varietal responses and yield losses. Plant Disease 100:1388−96

doi: 10.1094/PDIS-11-15-1274-RE
[33]

E. Nuwamanya, Y. Baguma, E. Atwijukire, S. Acheng TA. 2015. Effect of cassava brown streak disease (CBSD) on cassava (Manihot esculenta Crantz) root storage components, starch quantities and starch quality properties. International Journal of Plant Physiology and Biochemistry 7:12−22

[34]

Zanini AA, Di Feo L, Luna DF, Paccioretti P, Collavino A, et al. 2021. Cassava common mosaic virus infection causes alterations in chloroplast ultrastructure, function, and carbohydrate metabolism of cassava plants. Plant Pathology 70:195−205

doi: 10.1111/ppa.13272
[35]

Storey HH. 1936. Virus diseases of east African plants. The East African Agricultural Journal 1:333−37

doi: 10.1080/03670074.1936.11663679
[36]

Nichols RFW. 1950. The brown streak disease of cassava. The East African Agricultural Journal 15:154−60

doi: 10.1080/03670074.1950.11664727
[37]

Legg J, Ndalahwa M, Yabeja J, Ndyetabula I, Bouwmeester H, et al. 2017. Community phytosanitation to manage cassava brown streak disease. Virus Research 241:236−53

doi: 10.1016/j.virusres.2017.04.020
[38]

Shirima RR, Legg JP, Maeda DG, Tumwegamire S, Mkamilo G, et al. 2020. Genotype by environment cultivar evaluation for cassava brown streak disease resistance in Tanzania. Virus Research 286:198017

doi: 10.1016/j.virusres.2020.198017
[39]

Shirima RR, Wosula EN, Hamza AA, Ali Mohammed N, Mouigni H, et al. 2022. Epidemiological analysis of cassava mosaic and brown streak diseases, and Bemisia tabaci in the Comoros Islands. Viruses 14:2165

doi: 10.3390/v14102165
[40]

Monger WA, Seal S, Cotton S, Foster GD. 2001. Identification of different isolates of Cassava brown streak virus and development of a diagnostic test. Plant Pathology 50:768−75

doi: 10.1046/j.1365-3059.2001.00647.x
[41]

Mbanzibwa DR, Tian YP, Tugume AK, Mukasa SB, Tairo F, et al. 2009. Genetically distinct strains of Cassava brown streak virus in the Lake Victoria basin and the Indian Ocean coastal area of East Africa. Archives of Virology 154:353−59

doi: 10.1007/s00705-008-0301-9
[42]

Maruthi MN, Jeremiah SC, Mohammed IU, Legg JP. 2017. The role of the whitefly, Bemisia tabaci (Gennadius), and farmer practices in the spread of cassava brown streak ipomoviruses. Journal of Phytopathology 165:707−17

doi: 10.1111/jph.12609
[43]

Maruthi MN, Whitfield EC, Otti G, Tumwegamire S, Kanju E, et al. 2019. A method for generating virus-free cassava plants to combat viral disease epidemics in Africa. Physiological and Molecular Plant Pathology 105:77−87

doi: 10.1016/j.pmpp.2018.09.002
[44]

Hillocks RJ, Jennings DL. 2003. Cassava brown streak disease: A review of present knowledge and research needs. International Journal of Pest Management 49:225−34

doi: 10.1080/0967087031000101061
[45]

Bock KR. 1994. Studies on Cassava brown streak virus disease in Kenya. Tropical Science 34:134−45

[46]

Hillocks RJ, Raya M, Thresh JM. 1996. The association between root necrosis and above-ground symptoms of brown streak virus infection of cassava in southern Tanzania). International Journal of Pest Management 42:285−89

doi: 10.1080/09670879609372008
[47]

Bigirimana S, Barumbanze, SP, Ndayihanzamaso P, Shirima R, Legg JP. 2011. First report of cassava brown streak disease and associated Ugandan cassava brown streak virus in Burundi. New Disease Reports 24:26

doi: 10.5197/j.2044-0588.2011.024.026
[48]

Mulimbi W, Phemba X, Assumani B, Kasereka P, Muyisa S, et al. 2012. First report of Ugandan Cassava brown streak virus on cassava in Democratic Republic of Congo. New Disease Reports 26:11

doi: 10.5197/j.2044-0588.2012.026.011
[49]

Roux-Cuvelier M, Teyssedre D, Chesneau T, Jeffray C, Massé D, et al. 2014. First report of cassava brown streak disease and associated Ugandan Cassava brown streak virus in Mayotte Island. New Disease Reports 30:28

doi: 10.5197/j.2044-0588.2014.030.028
[50]

Azali HA, Maillot V, Cassam N, Chesneau T, Soulezelle J, et al. 2017. Occurrence of cassava brown streak disease and associated Cassava brown streak virus and Ugandan cassava brown streak virus in the Comoros Islands. New Disease Reports 36:19

doi: 10.5197/j.2044-0588.2017.036.019
[51]

Munganyinka E, Ateka EM, Kihurani AW, Kanyange MC, Tairo F, et al. 2018. Cassava brown streak disease in Rwanda, the associated viruses and disease phenotypes. Plant Pathology 67:377−87

doi: 10.1111/ppa.12789
[52]

Mulenga RM, Boykin LM, Chikoti PC, Sichilima S, Ng’Uni D, et al. 2018. Cassava brown streak disease and Ugandan cassava brown streak virus reported for the first time in Zambia. Plant Disease 102:1410−18

doi: 10.1094/PDIS-11-17-1707-RE
[53]

Kulembeka HP, Ferguson M, Herselman L, Kanju E, Mkamilo G, et al. 2012. Diallel analysis of field resistance to brown streak disease in cassava (Manihot esculenta Crantz) landraces from Tanzania. Euphytica 187:277−88

doi: 10.1007/s10681-012-0730-0
[54]

Sheat S, Fuerholzner B, Stein B, Winter S. 2019. Resistance against cassava brown streak viruses from Africa in cassava germplasm from South America. Frontiers in Plant Science 10:567

doi: 10.3389/fpls.2019.00567
[55]

Nichols RFW. 1947. Breeding cassava for virus resistance. The East African Agricultural Journal 12:184−94

doi: 10.1080/03670074.1947.11664554
[56]

Jennings DL. 1957. Further studies in breeding cassava for virus resistance. The East African Agricultural Journal 22:213−19

doi: 10.1080/03670074.1957.11665107
[57]

Jennings DL, Iglesias C. 2002. Breeding for crop improvement. In Cassava: biology, production and utilization, eds. Hillocks RJ, Thresh JM, Bellotti AC. Wallingford, UK: CAB International. pp. 149–66. https://doi.org/10.1079/9780851995243.0149

[58]

Kaweesi T, Kawuki R, Kyaligonza V, Baguma Y, Tusiime G, et al. 2014. Field evaluation of selected cassava genotypes for cassava brown streak disease based on symptom expression and virus load. Virology Journal 11:216

doi: 10.1186/s12985-014-0216-x
[59]

Mbanzibwa DR, Tian YP, Tugume AK, Mukasa SB, Tairo F, et al. 2011. Simultaneous virus-specific detection of the two cassava brown streak-associated viruses by RT-PCR reveals wide distribution in East Africa, mixed infections, and infections in Manihot glaziovii. Journal of Virological Methods 171:394−400

doi: 10.1016/j.jviromet.2010.09.024
[60]

Amisse JJG, Ndunguru J, Tairo F, Boykin LM, Kehoe MA, et al. 2019. First report of Cassava brown streak viruses on wild plant species in Mozambique. Physiological and Molecular Plant Pathology 105:88−95

doi: 10.1016/j.pmpp.2018.10.005
[61]

Mukiibi DR, Alicai T, Kawuki R, Okao-Okuja G, Tairo F, et al. 2019. Resistance of advanced cassava breeding clones to infection by major viruses in Uganda. Crop Protection 115:104−12

doi: 10.1016/j.cropro.2018.09.015
[62]

Nyirakanani C, Tamisier L, Bizimana JP, Rollin J, Nduwumuremyi A, et al. 2023. Going beyond consensus genome sequences : An innovative SNP-based methodology reconstructs different Ugandan cassava brown streak virus haplotypes at a nationwide scale in Rwanda. Virus Evolution 9:vead053

doi: 10.1093/ve/vead053
[63]

Mero HR, Lyantagaye SL, Bongcam-Rudloff E. 2021. Why has permanent control of cassava brown streak disease in Sub-Saharan Africa remained a dream since the 1930s? Infection, Genetics and Evolution 94:105001

doi: 10.1016/j.meegid.2021.105001
[64]

Sheat S, Zhang X, Winter S. 2022. High-throughput virus screening in crosses of South American and African cassava germplasm reveals broad-spectrum resistance against viruses causing cassava brown streak disease and cassava mosaic virus disease. Agronomy 12:1055

doi: 10.3390/agronomy12051055
[65]

Sheat S, Winter S. 2023. Developing broad-spectrum resistance in cassava against viruses causing the cassava mosaic and the cassava brown streak diseases. Frontiers in Plant Science 14:1042701

doi: 10.3389/fpls.2023.1042701
[66]

Kawuki RS, Esuma W, Ozimati A, Kayondo IS, Nandudu L, et al. 2019. Alternative approaches for assessing cassava brown streak root necrosis to guide resistance breeding and selection. Frontiers in Plant Science 10:1461

doi: 10.3389/fpls.2019.01461
[67]

Fukuda WMG, de Oliveira S, Iglesias C. 2002. Cassava breeding. Cropp Breeding and Applied Biotechnology 2:617−38

[68]

Alves AAC. 2002. Cassava botany and physiology. In Cassava: Biology, Production and Utilization, eds. Hillocks RJ, Thresh JM, Bellotti AC. Wallingford, UK: CAB International. pp. 67–89. https://doi.org/10.1079/9780851995243.0067

[69]

Ceballos H, Kawuki RS, Gracen VE, Yencho GC, Hershey CH. 2015. Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. Theoretical and Applied Genetics 128:1647−67

doi: 10.1007/s00122-015-2555-4
[70]

Ceballos H, Hershey CH. 2017. Cassava (Manihot esculenta Crantz). In Genetic Improvement of Tropical Crops, eds. Hugo CP, Caligari DS. Gewerbestrasse: Springer. pp. 129–80. https://doi.org/10.1007/978-3-319-59819-2_5

[71]

Bredeson JV, Lyons JB, Prochnik SE, Wu GA, Ha CM, et al. 2016. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nature Biotechnology 34:562−70

doi: 10.1038/nbt.3535
[72]

Chavarriaga-Aguirre P, Brand A, Medina A, Prías M, Escobar R, et al. 2016. The potential of using biotechnology to improve cassava: a review. In Vitro Cellular & Developmental Biology - Plant 52:461−78

doi: 10.1007/s11627-016-9776-3
[73]

Kunkeaw S, Tangphatsornruang S, Smith DR, Triwitayakorn K. 2010. Genetic linkage map of cassava (Manihot esculenta Crantz) based on AFLP and SSR markers. Plant Breeding 129:112−15

doi: 10.1111/j.1439-0523.2009.01623.x
[74]

Halsey ME, Olsen KM, Taylor NJ, Chavarriaga-Aguirre P. 2008. Reproductive biology of cassava (Manihot esculenta Crantz) and isolation of experimental field trials. Crop Science 48:49−58

doi: 10.2135/cropsci2007.05.0279
[75]

Hillocks RJ, Thresh JM. 2000. Cassava mosaic and cassava brown streak virus diseases in Africa: a comparative guide to symptoms and aetiologies. Roots 7:1−8

[76]

Fargette D, Fauquet C, Grenier E, Thresh JM. 1990. The spread of African Cassava mosaic virus into and within cassava fields. Journal of Phytopathology 130:289−302

doi: 10.1111/j.1439-0434.1990.tb01179.x
[77]

Patil BL, Legg JP, Kanju E, Fauquet CM. 2015. Cassava brown streak disease: a threat to food security in Africa. The Journal of General Virology 96:956−68

doi: 10.1099/jgv.0.000014
[78]

Legg JP, Thresh JM. 2003. Cassava virus diseases in Africa. Proceedings of a conference on Plant Virology in Sub Saharan Africa, Ibadan, Nigeria, 4-8 June 2001. pp. 517–52. https://hdl.handle.net/10568/96502

[79]

Ntawuruhunga P, Legg JP. 2007. New spread of cassava brown streak virus disease and its implications for the movement of cassava germplasm in the east and central African region. Crop Crisis Control Project. Dar es Salaam, Tanzania. www.researchgate.net/publication/237690914

[80]

Wagaba H, Beyene G, Trembley C, Alicai T, Fauquet CM, et al. 2013. Efficient transmission of Cassava brown streak disease viral pathogens by chip bud grafting. BMC Research Notes 6:516

doi: 10.1186/1756-0500-6-516
[81]

Moreno I, Gruissem W, Vanderschuren H. 2011. Reference genes for reliable potyvirus quantitation in cassava and analysis of Cassava brown streak virus load in host varieties. Journal of Virological Methods 177:49−54

doi: 10.1016/j.jviromet.2011.06.013
[82]

Ano CU, Ochwo-Ssemakula M, Ibanda A, Ozimati A, Gibson P, et al. 2021. Cassava Brown Streak Disease Response and Association With Agronomic Traits in Elite Nigerian Cassava Cultivars. Frontiers in Plant Science 12:720532

doi: 10.3389/fpls.2021.720532
[83]

Kanju E, Uzokwe VNE, Saleh H, Mohamed S, Masumba E, et al. 2017. Performance of cassava brown streak disease-tolerant varieties in Zanzibar, Tanzania. Indian Journal of Horticulture 74:557−61

doi: 10.5958/0974-0112.2017.00107.4
[84]

Masinde EA, Mkamillo G, Ogendo JO, Hillocks R, Mulwa RMS, et al. 2018. Genotype by environment interactions in identifying cassava (Manihot esculenta Crantz) resistant to cassava brown streak disease. Field Crops Research 215:39−48

doi: 10.1016/j.fcr.2017.10.001
[85]

Kanju E, Uzokwe VNE, Ntawuruhunga P, Tumwegamire S, Yabeja J, et al. 2019. Varietal response of cassava root yield components and root necrosis from cassava Brown streak disease to time of harvesting in Uganda. Crop Protection 120:58−66

doi: 10.1016/j.cropro.2019.02.013
[86]

Gondwe FMT, Mahungu NM, Hillocks RJ, Raya MD, Moyo CC, et al. 2003. Economic Losses Experienced by Small-scale Farmers in Malawi due to Cassava Brown Streak Virus Disease. In Cassava Brown Streak Virus Disease: Past, Present and Future. Aylesford, eds. Legg JM, Hillocks RJ. UK: Natural Resources International Limited. pp. 28–36. https://biblio.iita.org/documents/S03ProcGondweEconomicNothomDev.pdf-ae91c43dd5867327acb60e09d3c83386.pdf

[87]

Anjanappa RB, Mehta D, Maruthi MN, Kanju E, Gruissem W, et al. 2016. Characterization of brown streak virus-resistant cassava. Molecular Plant-Microbe Interactions 29:527−34

doi: 10.1094/MPMI-01-16-0027-R
[88]

Elegba W, Gruissem W, Vanderschuren H. 2020. Screening for resistance in farmer-preferred cassava cultivars from ghana to a mixed infection of CBSV and UCBSV. Plants 9:1026

doi: 10.3390/plants9081026
[89]

Brewer HC, Hird DL, Bailey AM, Seal SE, Foster GD. 2018. A guide to the contained use of plant virus infectious clones. Plant Biotechnology Journal 16:832−43

doi: 10.1111/pbi.12876
[90]

Shakir S, Zaidi SSA, Hashemi FSG, Nyirakanani C, Vanderschuren H. 2023. Harnessing plant viruses in the metagenomics era: from the development of infectious clones to applications. Trends in Plant Science 28:297−311

doi: 10.1016/j.tplants.2022.10.005
[91]

Tomlinson KR, Seal SE, Bailey AM, Foster GD. 2019. Utilization of infectious clones to visualize Cassava brown streak virus replication in planta and gain insights into symptom development. Virus Genes 55:825−33

doi: 10.1007/s11262-019-01697-5
[92]

Duff-Farrier CRA, Mbanzibwa DR, Nanyiti S, Bunawan H, Pablo-Rodriguez JL, et al. 2019. Strategies for the construction of cassava brown streak disease viral infectious clones. Molecular Biotechnology 61:93−101

doi: 10.1007/s12033-018-0139-7
[93]

Nanyiti S. 2019. Construction of full-length infectious clones for Ugandan cassava brown streak virus (UCBSV). Journal of Plant Biotechnology and Microbiology 3:13

[94]

Abaca A, Kawuki R, Tukamuhabwa P, Baguma Y, Pariyo A, et al. 2012. Evaluation of local and elite cassava genotypes for resistance to cassava brown streak disease in Uganda. Journal of Agronomy 11:65−72

doi: 10.3923/ja.2012.65.72
[95]

Kawuki RS, Kaweesi T, Esuma W, Pariyo A, Kayondo IS, et al. 2016. Eleven years of breeding efforts to combat cassava brown streak disease. Breeding Science 66:560−71

doi: 10.1270/jsbbs.16005
[96]

Acquaah G. 2012. Principles of plant genetics and breeding. 2nd Edition. Bowie State University, Maryland, USA: John Wiley & Sons. 732 pp. https://doi.org/10.1002/9781118313718

[97]

Zacarias AM, Labuschagne MT. 2010. Diallel analysis of cassava brown streak disease, yield and yield related characteristics in Mozambique. Euphytica 176:309−20

doi: 10.1007/s10681-010-0203-2
[98]

Chipeta MM, Melis R, Shanahan P. 2018. Gene action controlling cassava brown streak disease resistance and storage root yield in cassava. Euphytica 214:104

doi: 10.1007/s10681-018-2196-1
[99]

Mohammed IU, Ghosh S, Maruthi MN. 2016. Host and virus effects on reversion in cassava affected by cassava brown streak disease. Plant Pathology 65:593−600

doi: 10.1111/ppa.12458
[100]

Masinde EA, Kimata B, Ogendo JO, Mulwa RMS, Mkamilo G, et al. 2021. Developing dual-resistant cassava to the two major viral diseases. Crop Science 61:1567−81

doi: 10.1002/csc2.20374
[101]

Manze F, Rubaihayo P, Ozimati A, Gibson P, Esuma W, et al. 2021. Genetic gains for yield and virus disease resistance of cassava varieties developed over the last eight decades in Uganda. Frontiers in Plant Science 12:651992

doi: 10.3389/fpls.2021.651992
[102]

Ramu P, Esuma W, Kawuki R, Rabbi IY, Egesi C, et al. 2017. Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nature Genetics 49:959−63

doi: 10.1038/ng.3845
[103]

Ceballos H, Perez J, Iglesias C, Fregene F, Calle F, et al. 2007. The use of doubled-haploids in cassava breeding. Proceedings of the 13th ISTRC Symposium, Bangkok, Thailand, 2007. Bangkok: Centro Internacional de Agricultura Tropical (CIAT). pp. 150–60. https://hdl.handle.net/10568/56113

[104]

Rojas MC, Pérez JC, Ceballos H, Baena D, Morante N, et al. 2009. Analysis of inbreeding depression in eight S1 cassava families. Crop Science 49:543−48

doi: 10.2135/cropsci2008.07.0419
[105]

de Freitas JPX, Diniz RP, de Oliveira SAS, da Silva Santos V, de Oliveira EJ. 2017. Inbreeding depression for severity caused by leaf diseases in cassava. Euphytica 213:205

doi: 10.1007/s10681-017-1995-0
[106]

de Freitas JPX, da Silva Santos V, de Oliveira EJ. 2016. Inbreeding depression in cassava for productive traits. Euphytica 209:137−45

doi: 10.1007/s10681-016-1649-7
[107]

Kawuki RS, Nuwamanya E, Labuschagne MT, Herselman L, Ferguson ME. 2011. Segregation of selected agronomic traits in six S1 cassava families. Journal of Plant Breeding and Crop Science 3:154−60

[108]

Ceballos H, Pérez JC, Joaqui Barandica O, Lenis JI, Morante N, et al. 2016. Cassava breeding I: The value of breeding value. Frontiers in Plant Science 7:1227

doi: 10.3389/fpls.2016.01227
[109]

Ruffel S, Dussault MH, Palloix A, Moury B, Bendahmane A, et al. 2002. A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (elF4E). The Plant Journal 32:1067−75

doi: 10.1046/j.1365-313X.2002.01499.x
[110]

Nicaise V, German-Retana S, Sanjuán R, Dubrana MP, Mazier M, et al. 2003. The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus Lettuce mosaic virus. Plant Physiology 132:1272−82

doi: 10.1104/pp.102.017855
[111]

Ruffel S, Gallois JL, Lesage ML, Caranta C. 2005. The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Molecular Genetics and Genomics 274:346−53

doi: 10.1007/s00438-005-0003-x
[112]

Tumwegamire S, Kanju E, Legg J, Shirima R, Kombo S, et al. 2018. Exchanging and managing in-vitro elite germplasm to combat Cassava Brown Streak Disease (CBSD) and Cassava Mosaic Disease (CMD) in Eastern and Southern Africa. Food Security 10:351−68

doi: 10.1007/s12571-018-0779-2
[113]

Nyirakanani C, Bizimana JP, Kwibuka Y, Nduwumuremyi A, Bigirimana VdP, et al. 2021. Farmer and field survey in cassava-growing districts of rwanda reveals key factors associated with cassava brown streak disease incidence and cassava productivity. Frontiers in Sustainable Food Systems 5:699655

doi: 10.3389/fsufs.2021.699655
[114]

Wolfe MD, Del Carpio DP, Alabi O, Ezenwaka LC, Ikeogu UN, et al. 2017. Prospects for genomic selection in cassava breeding. The Plant Genome 10:1−19

doi: 10.1016/j.plgene.2017.03.001
[115]

de Andrade LRB, Bandeira e Sousa M, Oliveira EJ, de Resende MDV, Azevedo CF. 2019. Cassava yield traits predicted by genomic selection methods. PLoS ONE 14:e0224920

doi: 10.1371/journal.pone.0224920
[116]

Masumba EA, Kapinga F, Mkamilo G, Salum K, Kulembeka H, et al. 2017. QTL associated with resistance to cassava brown streak and cassava mosaic diseases in a bi-parental cross of two Tanzanian farmer varieties, Namikonga and Albert. Theoretical and Applied Genetics 130:2069−90

doi: 10.1007/s00122-017-2943-z
[117]

Nzuki I, Katari MS, Bredeson JV, Masumba E, Kapinga F, et al. 2017. QTL mapping for pest and disease resistance in cassava and coincidence of some QTL with introgression regions derived from Manihot Glaziovii. Frontiers in Plant Science 8:1168

doi: 10.3389/fpls.2017.01168
[118]

Somo M, Kulembeka H, Mtunda K, Mrema E, Salum K, et al. 2020. Genomic prediction and quantitative trait locus discovery in a cassava training population constructed from multiple breeding stages. Crop Science 60:896−913

doi: 10.1002/csc2.20003
[119]

Garcia-Oliveira AL, Kimata B, Kasele S, Kapinga F, Masumba E, et al. 2020. Genetic analysis and QTL mapping for multiple biotic stress resistance in cassava. PLoS ONE 15:e0236674

doi: 10.1371/journal.pone.0236674
[120]

Pariyo A, Tukamuhabwa P, Baguma Y, Kawuki RS, Alicai T, et al. 2013. Simple sequence repeat (SSR) diversity of cassava in South, East and Central Africa in relation to resistance to cassava brown streak disease. African Journal of Biotechnology 12:4453−64

doi: 10.5897/AJB2013.12348
[121]

Ige AD, Olasanmi B, Bauchet GJ, Kayondo IS, Mbanjo EGN, et al. 2022. Validation of KASP-SNP markers in cassava germplasm for marker-assisted selection of increased carotenoid content and dry matter content. Frontiers in Plant Science 13:1016170

doi: 10.3389/fpls.2022.1016170
[122]

Ige AD, Olasanmi B, Mbanjo EGN, Kayondo IS, Parkes EY, et al. 2021. Conversion and validation of uniplex snp markers for selection of resistance to cassava mosaic disease in cassava breeding programs. Agronomy 11:420

doi: 10.3390/agronomy11030420
[123]

Ewa F, Asiwe JNA, Okogbenin E, Ogbonna AC, Egesi C. 2021. KASPar SNP genetic map of cassava for QTL discovery of productivity traits in moderate drought stress environment in Africa. Scientific Reports 11:11268

doi: 10.1038/s41598-021-90131-8
[124]

Rabbi IY, Kayondo SI, Bauchet G, Yusuf M, Aghogho CI, et al. 2022. Genome-wide association analysis reveals new insights into the genetic architecture of defensive, agro-morphological and quality-related traits in cassava. Plant Molecular Biology 109:195−213

doi: 10.1007/s11103-020-01038-3
[125]

Uchendu K, Njoku DN, Ikeogu UN, Dzidzienyo D, Tongoona P, et al. 2022. Genotype-by-environment interaction and stability of root mealiness and other organoleptic properties of boiled cassava roots. Scientific Reports 12:20909

doi: 10.1038/s41598-022-25172-8
[126]

Bakare MA, Kayondo SI, Aghogho CI, Wolfe MD, Parkes EY, et al. 2022. Exploring genotype by environment interaction on cassava yield and yield related traits using classical statistical methods. PLoS ONE 17:e0268189

doi: 10.1371/journal.pone.0268189
[127]

Amelework AB, Bairu MW, Marx R, Laing M, Venter SL. 2023. Genotype × Environment interaction and stability analysis of selected cassava cultivars in South Africa. Plants 12:2490

doi: 10.3390/plants12132490
[128]

Varshney RK, Roorkiwal M, Sorrells ME. 2017. Genomic selection for crop improvement: New Molecular Breeding Strategies for Crop Improvement. Switzerland: Springer US. XII, 258 pp. https://doi.org/10.1007/978-3-319-63170-7

[129]

de Oliveira EJ, de Resende MDV, da Silva Santos V, Ferreira CF, Oliveira GAF, et al. 2012. Genome-wide selection in cassava. Euphytica 187:263−76

doi: 10.1007/s10681-012-0722-0
[130]

Meuwissen THE, Hayes BJ, Goddard ME. 2001. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 157:1819−29

doi: 10.1093/genetics/157.4.1819
[131]

Torres LG, Vilela de Resende MD, Azevedo CF, Fonseca E Silva F, de Oliveira EJ. 2019. Genomic selection for productive traits in biparental cassava breeding populations. PLoS ONE 14:e0220245

doi: 10.1371/journal.pone.0220245
[132]

Kayondo SI, Pino Del Carpio D, Lozano R, Ozimati A, Wolfe M, et al. 2018. Genome-wide association mapping and genomic prediction for CBSD resistance in Manihot esculenta. Scientific Reports 8:1549

doi: 10.1038/s41598-018-19696-1
[133]

Ozimati A, Kawuki R, Esuma W, Kayondo IS, Wolfe M, et al. 2018. Training population optimization for prediction of cassava brown streak disease resistance in West African Clones. G3 Genes|Genomes|Genetics 8:3903−13

doi: 10.1534/g3.118.200710
[134]

Heffner EL, Sorrells ME, Jannink JL. 2009. Genomic Selection for Crop Improvement. Crop Science 49:1−12

doi: 10.2135/cropsci2008.08.0512
[135]

Esuma W, Ozimati A, Kulakow P, Gore MA, Wolfe MD, et al. 2021. Effectiveness of genomic selection for improving provitamin A carotenoid content and associated traits in cassava. G3 Genes|Genomes|Genetics 11:jkab160

doi: 10.1093/g3journal/jkab160
[136]

Shi S, Zhang X, Mandel MA, Zhang P, Zhang Y, et al. 2017. Variations of five eIF4E genes across cassava accessions exhibiting tolerant and susceptible responses to cassava brown streak disease. PLoS One 12:e0181998

doi: 10.1371/journal.pone.0181998
[137]

Gomez MA, Lin ZD, Moll T, Chauhan RD, Hayden L, et al. 2019. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnology Journal 17:421−34

doi: 10.1111/pbi.12987
[138]

Robaglia C, Caranta C. 2006. Translation initiation factors: A weak link in plant RNA virus infection. Trends in Plant Science 11:40−45

doi: 10.1016/j.tplants.2005.11.004
[139]

Provvidenti R, Hampton RO. 1992. Sources of resistance to viruses in the Potyviridae. In Potyvirus Taxonomy. Archives of Virology, ed. Barnett OW. Vol 5. Vienna: Springer. pp. 189–211. https://doi.org/10.1007/978-3-7091-6920-9_17

[140]

Diaz-Pendon JA, Truniger V, Nieto C, Garcia-Mas J, Bendahmane A, et al. 2004. Advances in understanding recessive resistance to plant viruses. Molecular Plant Pathology 5:223−33

doi: 10.1111/j.1364-3703.2004.00223.x
[141]

Hashimoto M, Neriya Y, Yamaji Y, Namba S. 2016. Recessive resistance to plant viruses: Potential resistance genes beyond translation initiation factors. Frontiers in Microbiology 7:1695

doi: 10.3389/fmicb.2016.01695
[142]

Lellis AD, Kasschau KD, Whitham SA, Carrington JC. 2002. Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Current Biology 12:1046−51

doi: 10.1016/S0960-9822(02)00898-9
[143]

Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, et al. 2016. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology 17:1140−53

doi: 10.1111/mpp.12375
[144]

Lebaron C, Rosado A, Sauvage C, Gauffier C, German-Retana S, et al. 2016. A new eIF4E1 allele characterized by RNAseq data mining is associated with resistance to potato virus Y in tomato albeit with a low durability. The Journal of General Virology 97:3063−72

doi: 10.1099/jgv.0.000609
[145]

Zaidi SSeA, Mahas A, Vanderschuren H, Mahfouz MM. 2020. Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biology 21:289

doi: 10.1186/s13059-020-02204-y
[146]

Bull SE, Seung D, Chanez C, Mehta D, Kuon JE, et al. 2018. Accelerated ex situ breeding of GBSS- and PTST1-edited cassava for modified starch. Science Advances 4:eaat6086

doi: 10.1126/sciadv.aat6086
[147]

Chatukuta P, Rey MEC. 2020. A cassava protoplast system for screening genes associated with the response to South African cassava mosaic virus. Virology Journal 17:184

doi: 10.1186/s12985-020-01453-4
[148]

Khumaida N, Ardie SW, Astuti MS. 2017. Characterization of irradiation induced mutants of cassava (Manihot esculenta Crantz) generated from Jame-jame and Adira-4 genotypes at M1V2 generation. KnE Life Sciences 2:22

doi: 10.18502/kls.v2i6.1016
[149]

Danso KE, Safo-Katanka O, Adu-Ampomah Y, Oduro V, Amoatey HM, et al. 2009. Application of induced mutation techniques in Ghana: Impact, challenges and the future. Induced plant mutations in the genomic era, Viena, Austria, 2009. Rome, Italy: FAO & IAEA. pp. 270–72.

[150]

Khumaida N, Ardie S, Dianasari M, Syukur M. 2015. Cassava (Manihot esculenta Crantz.) improvement through gamma irradiation. Procedia Food Science 3:27−34

doi: 10.1016/j.profoo.2015.01.003
[151]

Oyeyemi SM, Lawal AO. 2010. Reduction of cyanide content in cassava by gamma irradiation from cirus cobol (60) teletherapy machine. Continental Journal of Applied Sciences 5:69−73

[152]

Ibrahim Y, Baguma Y, Abincha W, Gibson P, Edema R, et al. 2020. Flowering problems and their possible solution in cassava breeding. Journal of Scientific Agriculture 4:83−89

doi: 10.25081/jsa.2020.v4.6220
[153]

Hyde PT, Guan X, Abreu V, Setter TL. 2020. The anti-ethylene growth regulator silver thiosulfate (STS) increases flower production and longevity in cassava (Manihot esculenta Crantz). Plant Growth Regulation 90:441−53

doi: 10.1007/s10725-019-00542-x
[154]

Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-bertioli SCM, et al. 2019. Breeding crops to feed 10 billion. Nature Biotechnology 37:744−54

doi: 10.1038/s41587-019-0152-9
[155]

Ceballos H, Jaramillo JJ, Salazar S, Pineda LM, Calle F, et al. 2017. Induction of flowering in cassava through grafting. Journal of Plant Breeding and Crop Science 9:19−29

doi: 10.5897/JPBCS2016.0617
[156]

Bull SE, Alder A, Barsan C, Kohler M, Hennig L, et al. 2017. FLOWERING LOCUS T triggers early and fertile flowering in glasshouse cassava (Manihot esculenta crantz). Plants 6:22

doi: 10.3390/plants6020022
[157]

Adeyemo OS, Chavarriaga P, Tohme J, Fregene M, Davis SJ, et al. 2017. Overexpression of Arabidopsis FLOWERING LOCUS T (FT) gene improves floral development in cassava (Manihot esculenta, Crantz). PLoS ONE 12:e0181460

doi: 10.1371/journal.pone.0181460
[158]

Pineda M, Morante N, Salazar S, Cuásquer J, Hyde PT, et al. 2020. Induction of earlier flowering in cassava through extended photoperiod. Agronomy 10:1273

doi: 10.3390/agronomy10091273
[159]

Santos P, Muñoz G, Uribe A. 2017. A study of introduction of flowering in cassava through grafting. African Journal of Plant Breeding 4(2):183−93

[160]

Silva Souza L, Diniz RP, Neves RJ, Alves AAC, Oliveira EJ. 2018. Grafting as a strategy to increase flowering of cassava. Scientia Horticulturae 240:544−51

doi: 10.1016/j.scienta.2018.06.070
[161]

Leelawijitkul S, Kongsil P, Kittipadakul P, Juntawong P. 2022. Correlation between relative gene expression patterns of two Flowering locus T (MeFT1 and MeFT2) in cassava leaf and flowering traits under different flowering induction conditions. Pakistan Journal of Biological Sciences 25:369−79

doi: 10.3923/pjbs.2022.369.379
[162]

Guan X. 2017. Optimizing silver thiosulfate applications on cassava to block ethylene effects and improve flower retention for breeding purposes. Thesis. Cornell University of Wales, USA. 74 pp.

[163]

Oluwasanya D, Esan O, Hyde PT, Kulakow P, Setter TL. 2021. Flower development in cassava is feminized by cytokinin, while proliferation is stimulated by anti-ethylene and pruning: Transcriptome responses. Frontiers in Plant Science 12:1−17

doi: 10.3389/fpls.2021.666266
[164]

Yuliadi E, Ardian. 2016. Flower induction of cassava (Manihot esculenta Crantz) through the application of paclobutrazol and KNO3. The USR International Seminar on Food Security (UISFS) Bandar Lampung, Indonesia, August 23–24, 2016, Bandar Lampung, Indonesia 1: 149–58

[165]

Hyde PT, Setter TL. 2022. Long-day photoperiod and cool temperature induce flowering in cassava: Expression of signaling genes. Frontiers in Plant Science 13:973206

doi: 10.3389/fpls.2022.973206
[166]

Roque-borda CA, Kulus D, Vacaro de Souza A, Kaviani B, Vicente EF. 2021. Cryopreservation of agronomic plant germplasm using vitrification-based methods: An overview of selected case studies. International Journal of Molecular Sciences 22:6157

doi: 10.3390/ijms22116157
[167]

Dinato NB, Santos IRI, Vigna BBZ, Ferreira de Paula A, Favero AP. 2020. PERSPECTIVE: Pollen Cryopreservation for Plant Breeding and Genetic Resources Conservation. Cryo Letters 41:115−27