[1]

Benina M, Obata T, Mehterov N, Ivanov I, Petrov V, et al. 2013. Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla, and Arabidopsis thaliana exposed to low temperature. Frontiers in Plant Science 4:499

doi: 10.3389/fpls.2013.00499
[2]

Gupta A, Singh M, Laxmi A. 2015. Interaction between glucose and brassinosteroid during the regulation of lateral root development in Arabidopsis. Plant Physiology 168:307−20

doi: 10.1104/pp.114.256313
[3]

Miao L, Li Q, Sun T, Chai S, Wang C, et al. 2021. Sugars promote graft union development in the heterograft of cucumber onto pumpkin. Horticulture Research 8:146

doi: 10.1038/s41438-021-00580-5
[4]

Meng L, Bao Q, Mu X, Tong C, Cao X, et al. 2021. Glucose- and sucrose-signaling modules regulate the Arabidopsis juvenile-to-adult phase transition. Cell Reports 36:109348

doi: 10.1016/j.celrep.2021.109348
[5]

Liu X, An X, Liu X, Hu D, Wang X, et al. 2017. MdSnRK1.1 interacts with MdJAZ18 to regulate sucrose-induced anthocyanin and proanthocyanidin accumulation in apple. Journal of Experimental Botany 68:2977−90

doi: 10.1093/jxb/erx150
[6]

Salam BB, Barbier F, Danieli R, Teper-Bamnolker P, Ziv C, et al. 2021. Sucrose promotes stem branching through cytokinin. Plant Physiology 185:1708−21

doi: 10.1093/plphys/kiab003
[7]

Meitzel T, Radchuk R, McAdam EL, Thormählen I, Feil R, et al. 2021. Trehalose 6-phosphate promotes seed filling by activating auxin biosynthesis. New Phytologist 229:1553−65

doi: 10.1111/nph.16956
[8]

Paul MJ, Gonzalez-Uriarte A, Griffiths CA, Hassani-Pak K. 2018. The role of trehalose 6-phosphate in crop yield and resilience. Plant Physiology 177:12−23

doi: 10.1104/pp.17.01634
[9]

Ponnu J, Schlereth A, Zacharaki V, Działo MA, Abel C, et al. 2020. The trehalose 6-phosphate pathway impacts vegetative phase change in Arabidopsis thaliana. The Plant Journal 104:768−80

doi: 10.1111/tpj.14965
[10]

Chen T, Zhang Z, Li B, Qin G, Tian S. 2021. Molecular basis for optimizing sugar metabolism and transport during fruit development. aBIOTECH 2:330−40

doi: 10.1007/s42994-021-00061-2
[11]

del C Luzardo M, Amalfa F, Nuñez AM, Díaz S, Biondi de Lopez AC, et al. 2000. Effect of trehalose and sucrose on the hydration and dipole potential of lipid bilayers. Biophysical Journal 78:2452−58

doi: 10.1016/S0006-3495(00)76789-0
[12]

Elbein AD, Pan Y, Pastuszak I, Carroll D. 2003. New insights on trehalose: a multi functional molecule. Glycobiology 13:17R−27R

doi: 10.1093/glycob/cwg047
[13]

Gong T, Li L, Zhao Z, Liu D. 2016. Advances in trehalose biosynthesis pathways and application of molecular biology technique. Chinese Agricultural Science & Technology 17:1790−95

doi: 10.16175/j.cnki.1009-4229.2016.08.008
[14]

Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C. 2010. Trehalose and plant stress responses: friend or foe? Trends in Plant Science 15:409−17

doi: 10.1016/j.tplants.2010.04.004
[15]

Li H, Zang B, Deng X, Wang X. 2011. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007−18

doi: 10.1007/s00425-011-1458-0
[16]

Ali Q, Ashraf M, Anwar F, Al-Qurainy F. 2012. Trehalose-induced changes in seed oil composition and antioxidant potential of maize grown under drought stress. Journal of the American Oil Chemists' Society 89:1485−93

doi: 10.1007/s11746-012-2032-z
[17]

Nounjan N, Theerakulpisut P. 2012. Effects of exogenous proline and trehalose on physiological responses in rice seedlings during salt-stress and after recovery. Plant, Soil & Environment 58:309−15

doi: 10.17221/762/2011-pse
[18]

Luo Y, Liu H, Fan Y, Wang W, Zhao Y. 2018. Comparative chloroplast proteome analysis of exogenously supplied trehalose to wheat seedlings under heat stress. Photosynthetica 56:1123−33

doi: 10.1007/s11099-018-0808-6
[19]

Fu Y, Zhang Z, Liu J, Chen M, Pan R, et al. 2020. Seed priming with spermidine and trehalose enhances chilling tolerance of rice via different mechanisms. Journal of Plant Growth Regulation 39:669−79

doi: 10.1007/s00344-019-10009-y
[20]

Han J, He D, Zou C, Luo Y. 2021. Research progress on response mechanism of trehalose to abiotic stress in plants. Biology Teaching 46:2−4

doi: 10.3969/j.issn.1004-7549.2021.10.001
[21]

Jain NK, Roy I. 2010. Trehalose and protein stability. Current Protocols in Protein Science 59:4.9.1−4.9.12

doi: 10.1002/0471140864.ps0409s59
[22]

Kosar F, Akram NA, Sadiq M, Al-Qurainy F, Ashraf M. 2019. Trehalose: a key organic osmolyte effectively involved in plant abiotic stress tolerance. Journal of Plant Growth Regulation 38:606−18

doi: 10.1007/s00344-018-9876-x
[23]

Paul S, Paul S. 2014. Trehalose induced modifications in the solvation pattern of N-methylacetamide. The Journal of Physical Chemistry B 118:1052−63

doi: 10.1021/jp407782x
[24]

Jia H, Li K, Luan Q, Wu J, Chen S. 2017. The application and protection mechanism of trehalose on biomaterials. Fine and Specialty Chemicals 25:51−53

doi: 10.19482/j.cn11-3237.2017.11.12
[25]

Wang W, Zhang Y, Yu M, Wang P. 2020. Research progress of trehalose in regulating plant response to abiotic stress. Molecular Plant Breeding 18:3433−40

doi: 10.13271/j.mpb.018.003433
[26]

Blázquez MA, Santos E, Flores CL, Martínez-Zapater JM, Salinas J, et al. 1998. Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. The Plant Journal 13:685−89

doi: 10.1046/j.1365-313X.1998.00063.x
[27]

Vogel G, Aeschbacher RA, Müller J, Boller T, Wiemken A. 1998. Trehalose-6-phosphate phosphatases from Arabidopsis thaliana: identification by functional complementation of the yeast tps2 mutant. The Plant Journal 13:673−83

doi: 10.1046/j.1365-313X.1998.00064.x
[28]

Vandesteene L, López-Galvis L, Vanneste K, Feil R, Maere S, et al. 2012. Expansive evolution of the trehalose-6-phosphate phosphatase gene family in Arabidopsis. Plant Physiology 160:884−96

doi: 10.1104/pp.112.201400
[29]

Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M. 2014. Trehalose metabolism in plants. The Plant Journal 79:544−67

doi: 10.1111/tpj.12509
[30]

Ge L, Chao D, Shi M, Zhu M, Gao J, et al. 2008. Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228:191−201

doi: 10.1007/s00425-008-0729-x
[31]

Han B, Fu L, Zhang D, He X, Chen Q, et al. 2016. Interspecies and intraspecies analysis of trehalose contents and the biosynthesis pathway gene family reveals crucial roles of trehalose in osmotic-stress tolerance in cassava. International Journal of Molecular Sciences 17:1077

doi: 10.3390/ijms17071077
[32]

Noroozipoor A, Aghdasi M, Sadeghipour HR. 2020. Differential carbohydrate dynamics in Arabidopsis wild-type and ntrc mutant after trehalose feeding. Acta Physiologiae Plantarum 42:78

doi: 10.1007/s11738-020-03065-5
[33]

Zhao Y, Teng Z, Yu H, Wang Y, Ye N. 2023. Trehalose and sucrose inhibit rice seed germination by promoting the biosynthesis of abscisic acid. Molecular Plant Breeding 21:2693−702

doi: 10.13271/j.mpb.021.002693
[34]

Wang W, Chen Q, Xu S, Liu W, Zhu X, et al. 2020. Trehalose-6-phosphate phosphatase E modulates ABA-controlled root growth and stomatal movement in Arabidopsis. Journal of Integrative Plant Biology 62:1518−34

doi: 10.1111/jipb.12925
[35]

Barraza A, Contreras-Cubas C, Estrada-Navarrete G, Reyes JL, Juárez-Verdayes MA, et al. 2016. The class II trehalose 6-phosphate synthase gene PvTPS9 modulates trehalose metabolism in Phaseolus vulgaris nodules. Frontiers in Plant Science 7:1589

doi: 10.3389/fpls.2016.01589
[36]

Kataya ARA, Elshobaky A, Heidari B, Dugassa NF, Thelen JJ, et al. 2020. Multi-targeted trehalose-6-phosphate phosphatase I harbors a novel peroxisomal targeting signal 1 and is essential for flowering and development. Planta 251:98

doi: 10.1007/s00425-020-03389-z
[37]

Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, et al. 2013. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339:704−07

doi: 10.1126/science.1230406
[38]

Zhao M, Ni J, Chen M, Xu Z. 2019. Ectopic expression of Jatropha curcas TREHALOSE-6-PHOSPHATE PHOSPHATASE J causes late-flowering and heterostylous phenotypes in Arabidopsis but not in Jatropha. International Journal of Molecular Sciences 20:2165

doi: 10.3390/ijms20092165
[39]

Zhang X. 2019. Mechanism analysis of lotus flower bud abortion under weak light mediated by trehalose-6-phosphate-synthese. Dissertation. Nanjing Agricultural University, China

[40]

Mori IC, Matsuura T, Otao M, Ooi L, Nishimura Y, et al. 2023. Application of trehalose mitigates short-styled flowers in Solanaceous crops. Journal of Agricultural & Food Chemistry 71:5476−82

doi: 10.1021/acs.jafc.2c08479
[41]

Islam S, Mohammad F. 2021. Modulation of growth, photosynthetic efficiency, leaf biochemistry, cell viability and yield of Indian mustard by the application of trehalose. Scientia Horticulturae 290:110527

doi: 10.1016/j.scienta.2021.110527
[42]

Zhang W, Zhang N, Zhao J, Guo Y, Zhao Z, et al. 2017. Potassium fertilization improves apple fruit (Malus domestica Borkh. Cv. Fuji) development by regulating trehalose metabolism. The Journal of Horticultural Science & Biotechnology 92:539−49

doi: 10.1080/14620316.2017.1304165
[43]

Fichtner F, Lunn JE. 2021. The role of trehalose 6-phosphate (Tre6P) in plant metabolism and development. Annual Review of Plant Biology 72:737−60

doi: 10.1146/annurev-arplant-050718-095929
[44]

Hwang G, Kim S, Cho JY, Paik I, Kim JI, et al. 2019. Trehalose-6-phosphate signaling regulates thermoresponsive hypocotyl growth in Arabidopsis thaliana. EMBO Reports 20:e47828

doi: 10.15252/embr.201947828
[45]

Fichtner F, Barbier FF, Feil R, Watanabe M, Annunziata MG, et al. 2017. Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.). The Plant Journal 92:611−23

doi: 10.1111/tpj.13705
[46]

Fichtner F, Barbier FF, Annunziata MG, Feil R, Olas JJ, et al. 2021. Regulation of shoot branching in arabidopsis by trehalose 6-phosphate. New Phytologist 229:2135−51

doi: 10.1111/nph.17006
[47]

Martins MCM, Hejazi M, Fettke J, Steup M, Feil R, et al. 2013. Feedback inhibition of starch degradation in Arabidopsis leaves mediated by trehalose 6-phosphate. Plant Physiology 163:1142−63

doi: 10.1104/pp.113.226787
[48]

Feng D. 1999. Brief introduction of biological function of trehalose. Bulletin of Biology 34:13−14

[49]

Wang W, Yu H, Kim HS, Yang Y, Qiu X, et al. 2019. Molecular characterization of a sweet potato stress tolerance-associated trehalose-6-phosphate synthase 1 gene (IbTPS1) in response to abiotic stress. Plant Biotechnology Reports 13:235−43

doi: 10.1007/s11816-019-00532-5
[50]

Ma C, Wang Z, Kong B, Lin T. 2013. Exogenous trehalose differentially modulate antioxidant defense system in wheat callus during water deficit and subsequent recovery. Plant Growth Regulation 70:275−85

doi: 10.1007/s10725-013-9799-2
[51]

Yang L, Zhao X, Zhu H, Paul M, Zu Y, et al. 2014. Exogenous trehalose largely alleviates ionic unbalance, ROS burst, and PCD occurrence induced by high salinity in Arabidopsis seedlings. Frontiers in Plant Science 5:570

doi: 10.3389/fpls.2014.00570
[52]

Rohman MM, Islam MR, Monsur MB, Amiruzzaman M, Fujita M, et al. 2019. Trehalose protects maize plants from salt stress and phosphorus deficiency. Plants 8:568

doi: 10.3390/plants8120568
[53]

Liu T, Han Y, Shi J, Liang A, Xu D, et al. 2022. Abscisic acid involved in trehalose improved melon photosynthesis via regulating oxidative stress tolerance and cell morphology structure under cold stress. Environmental and Experimental Botany 202:105042

doi: 10.1016/j.envexpbot.2022.105042
[54]

Hao X, Wang X, Liu K. 2021. Effects of exogenous trehalose on the physiological characteristics of quinoa under drought stress. Journal of Shandong Agricultural University (Natural Science Edition) 52:739−45

doi: 10.3969/j.issn.1000-2324.2021.05.004
[55]

Ye Y, Lu D, Wang F, Chen X, Qi M, et al. 2020. Effects of exogenous trehalose on physiological characteristics in waxy maize seedlings under drought stress. Journal of Maize Sciences 28:80−86

doi: 10.13597/j.cnki.maize.science.20200310
[56]

Shafiq S, Akram NA, Ashraf M. 2015. Does exogenously-applied trehalose alter oxidatve defense system in the edible part of radish (Raphanus sativus L.) under water-deficit conditions? Scientia Horticulturae 185:68−75

doi: 10.1016/j.scienta.2015.01.010
[57]

Ali Q, Ashraf M. 2011. Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: growth, photosynthesis, water relations and oxidative defence mechanism. Journal of Agronomy and Crop Science 197:258−71

doi: 10.1111/j.1439-037X.2010.00463.x
[58]

Klofac D, Antosovsky J, Skarpa P. 2023. Effect of zinc foliar fertilization alone and combined with trehalose on maize (Zea mays L.) growth under the drought. Plants 12:2539

doi: 10.3390/plants12132539
[59]

Akram NA, Shafiq S, Ashraf M, Aisha R, Sajid MA. 2016. Drought-induced anatomical changes in radish (Raphanus sativus L.) leaves supplied with trehalose through different modes. Arid Land Research and Management 30:412−20

doi: 10.1080/15324982.2016.1145760
[60]

Li J, Xie Y, Li X, Wang J. 2021. Effects of trehalose on seed germination and drought tolerance of C4-PEPC transgenic rice. Journal of Nuclear Agricultural Sciences 35:2879−92

doi: 10.11869/j.issn.100-8551.2021.12.2879
[61]

Kuromori T, Seo M, Shinozaki K. 2018. ABA transport and plant water stress responses. Trends in Plant Science 23:513−22

doi: 10.1016/j.tplants.2018.04.001
[62]

Lin Q, Wang S, Dao Y, Wang J, Wang K. 2020. Arabidopsis thaliana trehalose-6-phosphate phosphatase gene TPPI enhances drought tolerance by regulating stomatal apertures. Journal of Experimental Botany 71:4285−97

doi: 10.1093/jxb/eraa173
[63]

Yu W, Zhao R, Wang L, Zhang S, Li R, et al. 2019. ABA signaling rather than ABA metabolism is involved in trehalose-induced drought tolerance in tomato plants. Planta 250:643−55

doi: 10.1007/s00425-019-03195-2
[64]

Jiang D, Chen W, Gao J, Yang F, Zhuang C. 2019. Overexpression of the trehalose-6-phosphate phosphatase OsTPP3 increases drought tolerance in rice. Plant Biotechnology Reports 13:285−92

doi: 10.1007/s11816-019-00541-4
[65]

Wang H. 2011. Exogenous trehalose improve Arabidopsis thaliana salt tolerance. Dissertation. Northeast Forestry University, China.

[66]

Zhao C, Zhang H, Song C, Zhu J, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. The Innovation 1:100017

doi: 10.1016/j.xinn.2020.100017
[67]

Abdallah MMS, Abdelgawad ZA, El-Bassiouny HMS. 2016. Alleviation of the adverse effects of salinity stress using trehalose in two rice varieties. South African Journal of Botany 103:275−82

doi: 10.1016/j.sajb.2015.09.019
[68]

Mostofa MG, Hossain MA, Fujita M. 2015. Trehalose pretreatment induces salt tolerance in rice (Oryza sativa L.) seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems. Protoplasma 252:461−75

doi: 10.1007/s00709-014-0691-3
[69]

Xu T, Zhou C, Zhou C, Zhao S, Wu L, et al. 2014. Effects of trehalose on antioxidant system of melon seedlings under salt stress. Northern Horticulture 19:28−30

[70]

Yuan G, Sun D, An G, Li W, Si W, et al. 2022. Transcriptomic and metabolomic analysis of the effects of exogenous trehalose on salt tolerance in watermelon (Citrullus lanatus). Cells 11:2338

doi: 10.3390/cells11152338
[71]

Shahbaz M, Abid A, Masood A, Waraich EA. 2017. Foliar-applied trehalose modulates growth, mineral nutrition, photosynthetic ability, and oxidative defense system of rice (Oryza sativa L.) under saline stress. Journal of Plant Nutrition 40:584−99

doi: 10.1080/01904167.2016.1263319
[72]

Samadi S, Habibi G, Vaziri A. 2019. Exogenous trehalose alleviates the inhibitory effects of salt stress in strawberry plants. Acta Physiologiae Plantarum 41:112

doi: 10.1007/s11738-019-2905-y
[73]

Krasensky J, Broyart C, Rabanal FA, Jonak C. 2014. The redox-sensitive chloroplast trehalose-6-phosphate phosphatase AtTPPD regulates salt stress tolerance. Antioxidants & Redox Signaling 21:1289−304

doi: 10.1089/ars.2013.5693
[74]

del Carmen Orozco-Mosqueda M, Duan J, DiBernardo M, Zetter E, Campos-García J, et al. 2019. The production of ACC deaminase and trehalose by the plant growth promoting bacterium Pseudomonas sp. UW4 synergistically protect tomato plants against salt stress. Frontiers in Microbiology 10:1392

doi: 10.3389/fmicb.2019.01392
[75]

Lu X, Liu X, Xu J, Liu Y, Chi Y, et al. 2023. Strigolactone-mediated trehalose enhances salt resistance in tomato seedlings. Horticulturae 9:770

doi: 10.3390/horticulturae9070770
[76]

Ye N, Wang Y, Yu H, Qin Z, Zhang J, et al. 2023. Abscisic acid enhances trehalose content via OsTPP3 to improve salt tolerance in rice seedlings. Plants 12:2665

doi: 10.3390/plants12142665
[77]

Wahid A, Gelani S, Ashraf M, Foolad MR. 2007. Heat tolerance in plants: an overview. Environmental and Experimental Botany 61:199−223

doi: 10.1016/j.envexpbot.2007.05.011
[78]

Luo Y, Wang W, Fan Y, Gao Y, Wang D. 2018. Exogenously-supplied trehalose provides better protection for D1 protein in winter wheat under heat stress. Russian Journal of Plant Physiology 65:115−22

doi: 10.1134/S1021443718010168
[79]

Oukarroum A, Madidi SE, Strasser RJ. 2012. Exogenous glycine betaine and proline play a protective role in heat-stressed barley leaves (Hordeum vulgare L.): a chlorophyll a fluorescence study. Plant Biosystems 146:1037−43

doi: 10.1080/11263504.2012.697493
[80]

Hussain R, Ayyub CM, Shaheen MR, Rashid S, Nafees M, et al. 2021. Regulation of osmotic balance and increased antioxidant activities under heat stress in Abelmoschus esculentus L. triggered by exogenous proline application. Agronomy 11:685

doi: 10.3390/agronomy11040685
[81]

Zhao D, Li T, Hao Z, Cheng M, Tao J. 2019. Exogenous trehalose confers high temperature stress tolerance to herbaceous peony by enhancing antioxidant systems, activating photosynthesis, and protecting cell structure. Cell Stress and Chaperones 24:247−57

doi: 10.1007/s12192-018-00961-1
[82]

Luo Y, Xie Y, He D, Wang W, Yuan S. 2021. Exogenous trehalose protects photosystem II by promoting cyclic electron flow under heat and drought stresses in winter wheat. Plant Biology 23:770−76

doi: 10.1111/plb.13277
[83]

Mamedov MD, Petrova IO, Yanykin DV, Zaspa AA, Semenov AY. 2015. Effect of trehalose on oxygen evolution and electron transfer in photosystem 2 complexes. Biochemistry Moscow 80:61−66

doi: 10.1134/S0006297915010071
[84]

Williams B, Njaci I, Moghaddam L, Long H, Dickman MB, et al. 2015. Trehalose accumulation triggers autophagy during plant desiccation. PLoS Genetics 11:e1005705

doi: 10.1371/journal.pgen.1005705
[85]

Liu X, Tong H, Tian L, Zuo S, Sun L, et al. 2018. Effects of exogenous trehalose on growth and physiological characteristics of maize seedling roots under chilling stress. Chinese Journal of Agrometeorology 39:538−47

doi: 10.3969/j.issn.1000-6362.2018.08.006
[86]

Liu T, Ye X, Li M, Li J, Qi H, et al. 2020. H2O2 and NO are involved in trehalose-regulated oxidative stress tolerance in cold-stressed tomato plants. Environmental and Experimental Botany 171:103961

doi: 10.1016/j.envexpbot.2019.103961
[87]

Liu T, Shi J, Li M, Ye X, Qi H. 2021. Trehalose triggers hydrogen peroxide and nitric oxide to participate in melon seedlings oxidative stress tolerance under cold stress. Environmental and Experimental Botany 184:104379

doi: 10.1016/j.envexpbot.2021.104379
[88]

Ding F, Wang R. 2018. Amelioration of postharvest chilling stress by trehalose in pepper. Scientia Horticulturae 232:52−56

doi: 10.1016/j.scienta.2017.12.053
[89]

Xie D, Wang X, Fu L, Sun J, Li Z, et al. 2015. Effect of exogenous trehalose on germ length and seedling freeze resistance of winter wheat under cold stress. Journal of Triticeae Crops 35:215−23

doi: 10.7606/j.issn.1009-1041.2015.02.10
[90]

Liu Z, Ma L, He X, Tian C. 2014. Water strategy of mycorrhizal rice at low temperature through the regulation of PIP aquaporins with the involvement of trehalose. Applied Soil Ecology 84:185−91

doi: 10.1016/j.apsoil.2014.07.010
[91]

Liang Z, Luo J, Wei B, Liao Y, Liu Y. 2021. Trehalose can alleviate decreases in grain number per spike caused by low-temperature stress at the booting stage by promoting floret fertility in wheat. Journal of Agronomy and Crop Science 207:717−32

doi: 10.1111/jac.12512
[92]

Liu X, Fu L, Qin P, Sun Y, Liu J, et al. 2019. Overexpression of the wheat trehalose 6-phosphate synthase 11 gene enhances cold tolerance in Arabidopsis thaliana. Gene 710:210−17

doi: 10.1016/j.gene.2019.06.006
[93]

Shu Y, Zhang W, Tang L, Li Z, Liu X, et al. 2023. ABF1 positively regulates rice chilling tolerance via inducing trehalose biosynthesis. International Journal of Molecular Sciences 24:11082

doi: 10.3390/ijms241311082
[94]

Mostofa MG, Hossain MA, Fujita M, Tran LSP. 2015. Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Scientific Reports 5:11433

doi: 10.1038/srep11433
[95]

Wang K, Li F, Gao M, Huang Y, Song Z. 2020. Mechanisms of trehalose-mediated mitigation of Cd toxicity in rice seedlings. Journal of Cleaner Production 267:121982

doi: 10.1016/j.jclepro.2020.121982
[96]

Alharby HF, Al-Zahrani HS, Hakeem KR, Ali S. 2023. Exogenous application of trehalose minimizes cadmium toxicity and alleviates oxidative stress in wheat under cadmium stress. Turkish Journal of Agriculture and Forestry 47:364−77

doi: 10.55730/1300-011X.3093
[97]

Martins LL, Mourato MP, Baptista S, Reis R, Carvalheiro F, et al. 2014. Response to oxidative stress induced by cadmium and copper in tobacco plants (Nicotiana tabacum) engineered with the trehalose-6-phosphate synthase gene (AtTPS1). Acta Physiologiae Plantarum 36:755−65

doi: 10.1007/s11738-013-1453-0
[98]

Ding F, Wang R, Wang T. 2018. Enhancement of germination, seedling growth, and oxidative metabolism of barley under simulated acid rain stress by exogenous trehalose. Crop Science 58:783−91

doi: 10.2135/cropsci2017.08.0491
[99]

Zou D, Wang S, Sun J, Li J, Yin T, et al. 2020. Effect of exogenous trehalose on seedling growth and physiological characteristics of different rice varieties under alkali stress. Journal of Northeast Agricultural University 51:1−9

doi: 10.19720/j.cnki.issn.1005-9369.2020.06.001
[100]

Lin Y, Zhang J, Gao W, Chen Y, Li H, et al. 2017. Exogenous trehalose improves growth under limiting nitrogen through upregulation of nitrogen metabolism. BMC Plant Biology 17:247

doi: 10.1186/s12870-017-1207-z
[101]

Kosar F, Akram NA, Ashraf M, Ahmad A, Alyemeni MN, et al. 2021. Impact of exogenously applied trehalose on leaf biochemistry, achene yield and oil composition of sunflower under drought stress. Physiologia plantarum 172:317−33

doi: 10.1111/ppl.13155
[102]

Zulfiqar F, Chen J, Finnegan PM, Younis A, Nafees M, et al. 2021. Application of trehalose and salicylic acid mitigates drought stress in sweet basil and improves plant growth. Plants 10:1078

doi: 10.3390/plants10061078