[1]

Amack SC, Antunes MS. 2020. CaMV35S promoter – a plant biology and biotechnology workhorse in the era of synthetic biology. Current Plant Biology 24:100179

doi: 10.1016/j.cpb.2020.100179
[2]

Aoyama T, Chua NH. 1997. A glucocorticoid mediated transcriptional induction system in transgenic plants. The Plant Journal 11:605−12

doi: 10.1046/j.1365-313X.1997.11030605.x
[3]

Gatz C. 1996. Chemically inducible promoters in transgenic plants. Current Opinion in Biotechnology 7:168−72

doi: 10.1016/S0958-1669(96)80008-5
[4]

Yao Y, He Y, Guan Q, Wu Q. 2014. A tetracycline expression system in combination with Sox9 for cartilage tissue engineering. Biomaterials 23:1898−906

doi: 10.1016/j.biomaterials.2013.11.043
[5]

Tavva VS, Dinkins RD, Palli SR, Collins GB. 2007. Development of a tightly regulated and highly inducible ecdysone receptor gene switch for plants through the use of retinoid X receptor chimeras. Transgenic Research 16:599−612

doi: 10.1007/s11248-006-9054-y
[6]

Schena M, Lloyd AM, Davis RW. 1991. A steroid-inducible gene expression system for plant cells. Proceedings of the National Academy of Sciences of the United States of America 88:10421−25

doi: 10.1073/pnas.88.23.10421
[7]

Böhner S, Lenk I, Rieping M, Herold M, Gatz C. 1999. Transcriptional activator TGV mediates dexamethasone-inducible and tetracycline-inactivatable gene expression. The Plant Journal 19:87−95

doi: 10.1046/j.1365-313X.1999.00503.x
[8]

Caddick MX, Greenland AJ, Jepson l, Krause KP, Qu N, et al. 1998. An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nature Biotechnology 16:177−80

doi: 10.1038/nbt0298-177
[9]

Amirsadeghi S, McDonald AE, Vanlerberghe GC. 2007. A glucocorticoid-inducible gene expression system can cause growth defects in tobacco. Planta 226:453−63

doi: 10.1007/s00425-007-0495-1
[10]

Kunkel T, Niu QW, Chan YS, Chua NH. 1999. Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. Nature Biotechnology 17:916−19

doi: 10.1038/12914
[11]

Picard D. 1993. Steroid-binding domains for regulating the functions of heterologous proteins in cis. Trends in Cell Biology 3:278−80

doi: 10.1016/0962-8924(93)90057-8
[12]

Fister AS, Landherr L, Perryman M, Zhang Y, Guiltinan MJ, et al. 2018. Glucocorticoid receptor-regulated TcLEC2 expression triggers somatic embryogenesis in Theobroma cacao leaf tissue. PLoS One 13:e0207666

doi: 10.1371/journal.pone.0207666
[13]

Nakata MT, Tameshige T, Takahara M, Mitsuda N, Okada K. 2018. The functional balance between the WUSCHEL-RELATED HOMEOBOX1 gene and the phytohormone auxin is a key factor for cell proliferation in Arabidopsis seedlings. Plant Biotechnology 35:141−54

doi: 10.5511/plantbiotechnology.18.0427a
[14]

Geng X, Mackey D. 2011. Dose–response to and systemic movement of dexamethasone in the GVG-inducible transgene system in Arabidopsis. In Plant Immunity, ed. McDowell J. Vol 712. Humana Press. pp. 59−68. https://doi.org/10.1007/978-1-61737-998-7_6

[15]

Li K, Wang J, Liu C, Li C, Qiu J, et al. 2019. Expression of AtLEC2 and AtIPTs promotes embryogenic callus formation and shoot regeneration in tobacco. BMC Plant Biology 19:314

doi: 10.1186/s12870-019-1907-7
[16]

Lee J, Das A, Yamaguchi M, Hashimoto J, Tsutsumi N, et al. 2003. Cell cycle function of a rice B2-type cyclin interacting with a B-type cyclin-dependent kinase. The Plant Journal 34:417−25

doi: 10.1046/j.1365-313X.2003.01736.x
[17]

Estevan J, Gómez-Jiménez S, da Silveira Falavigna V, Camuel A, Planel L, et al. 2020. An efficient protocol for functional studies of apple transcription factors using a glucocorticoid receptor fusion system. Applications in Plant Sciences 8:e11396

doi: 10.1002/aps3.11396
[18]

Andersen SU, Cvitanich C, Hougaard BK, Roussis A, Grønlund M, et al. 2003. The glucocorticoid-inducible GVG system causes severe growth defects in both root and shoot of the model legume Lotus japonicus. Molecular Plant-Microbe Interactions 16:1069−76

doi: 10.1094/MPMI.2003.16.12.1069
[19]

Ouwerkerk PB, de Kam RJ, Hoge HJ, Meijer AH. 2001. Glucocorticoid-inducible gene expression in rice. Planta 213:370−78

doi: 10.1007/s004250100583
[20]

Kang HG, Fang Y, Singh KB. 1999. A glucocorticoid-inducible transcription system causes severe growth defects in Arabidopsis and induces defense-related genes. The Plant Journal 20:127−33

doi: 10.1046/j.1365-313X.1999.00575.x
[21]

Long X, Zhang J, Wang D, Weng Y, Liu S, et al. 2023. Expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in Liriodendron hybrids. Forestry Research 3:15

doi: 10.48130/FR-2023-0015
[22]

Wang P, Dong Y, Zhu L, Hao Z, Hu L, et al. 2021. The role of γ-aminobutyric acid in aluminum stress tolerance in a woody plant, Liriodendron chinense × tulipifera. Horticulture Research 8:80

doi: 10.1038/s41438-021-00517-y
[23]

Chen J, Hao Z, Guang X, Zhao C, Wang P, et al. 2019. Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation. Nature Plants 5:18−25

doi: 10.1038/s41477-018-0323-6
[24]

Li M, Wang D, Long X, Hao Z, Lu Y, et al. 2022. Agrobacterium-mediated genetic transformation of embryogenic callus in a Liriodendron hybrid (L. Chinense × L. Tulipifera). Frontiers in Plant Science 13:802128

doi: 10.3389/fpls.2022.802128
[25]

Huo A, Chen Z, Wang P, Yang L, Wang G, et al. 2017. Establishment of transient gene expression systems in protoplasts from Liriodendron hybrid mesophyll cells. PLoS One 12:e0172475

doi: 10.1371/journal.pone.0172475
[26]

Pais MS. 2019. Somatic embryogenesis induction in woody species: the future after OMICs data assessment. Frontiers in Plant Science 10:240

doi: 10.3389/fpls.2019.00240
[27]

Aguilar ME, Wang X, Escalona M, Yan L, Huang L. 2022. Somatic embryogenesis of Arabica coffee in temporary immersion culture: advances, limitations, and perspectives for mass propagation of selected genotypes. Frontiers in Plant Science 13:994578

doi: 10.3389/fpls.2022.994578
[28]

Horstman A, Li M, Heidmann I, Weemen M, Chen B, et al. 2017. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiology 175:848−57

doi: 10.1104/pp.17.00232
[29]

Islam MK, Mummadi ST, Liu S, Wei H. 2023. Regulation of regeneration in Arabidopsis thaliana. aBIOTECH 4:332−51

doi: 10.1007/s42994-023-00121-9
[30]

Braybrook SA, Stone SL, Park S, Bui AQ, Le BH, et al. 2006. Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proceedings of the National Academy of Sciences of the United States of America 103:3468−73

doi: 10.1073/pnas.0511331103
[31]

Su Y, Zhao X, Liu Y, Zhang C, O'Neill SD, et al. 2009. Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. The Plant Journal 59:448−60

doi: 10.1111/j.1365-313X.2009.03880.x
[32]

Klimaszewska K, Pelletier G, Overton C, Stewart D, Rutledge RG. 2010. Hormonally regulated overexpression of Arabidopsis WUS and conifer LEC1 (CHAP3A) in transgenic white spruce: implications for somatic embryo development and somatic seedling growth. Plant Cell Reports 29:723−34

doi: 10.1007/s00299-010-0859-z
[33]

Bouchabké-Coussa O, Obellianne M, Linderme D, Montes E, Maia-Grondard A, et al. 2013. Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Reports 32:675−86

doi: 10.1007/s00299-013-1402-9
[34]

Li T, Chen J, Qiu S, Zhang Y, Wang P, et al. 2012. Deep sequencing and microarray hybridization identify conserved and species-specific microRNAs during somatic embryogenesis in hybrid yellow poplar. PLoS ONE 7:e43451

doi: 10.1371/journal.pone.0043451
[35]

Fillatti JJ, Sellmer J, McCown B, Haissig B, Comai L. 1987. Agrobacterium mediated transformation and regeneration of Populus. Molecular and General Genetics MGG 206:192−99

doi: 10.1007/BF00333574
[36]

Li T, Yuan W, Qiu S, Shi J. 2021. Selection of reference genes for gene expression analysis in Liriodendron hybrids' somatic embryogenesis and germinative tissues. Scientific Reports 11:4947

doi: 10.1038/s41598-021-84401-8
[37]

Abramoff MD, Magelhaes PJ, Ram SJ. 2004. Image processing with imageJ. Biophotonics International 11:36−42

[38]

Lu L, Holt A, Chen X, Liu Y, Knauer S, et al. 2023. miR394 enhances WUSCHEL-induced somatic embryogenesis in Arabidopsis thaliana. New Phytologist 238:1059−72

doi: 10.1111/nph.18801
[39]

Zuo J, Niu QW, Chua NH. 2000. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. The Plant Journal 24:265−73

doi: 10.1046/j.1365-313x.2000.00868.x
[40]

Zuo J, Niu QW, Frugis G, Chua NH. 2002. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. The Plant Journal 30:349−59

doi: 10.1046/j.1365-313X.2002.01289.x
[41]

Srinivasan C, Liu Z, Heidmann I, Supena EDJ, Fukuoka H, et al. 2007. Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta 225:341−51

doi: 10.1007/s00425-006-0358-1
[42]

Heidmann I, De Lange B, Lambalk J, Angenent GC, Boutilier K. 2011. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Reports 30:1107−15

doi: 10.1007/s00299-011-1018-x
[43]

Eklund DM, StÅldal V, Valsecchi I, Cierlik I, Eriksson C, et al. 2010. The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis. The Plant Cell 22:349−63

doi: 10.1105/tpc.108.064816
[44]

Yamaguchi N, Winter CM, Wellmer F, Wagner D. 2015. Identification of direct targets of plant transcription factors using the GR fusion technique. In Plant Functional Genomics, eds Alonso J, Stepanova A. Vol 1284. Humana Press, New York, NY. pp. 123–38. https://doi.org/10.1007/978-1-4939-2444-8_6

[45]

Fletcher JC. 2018. The CLV-WUS stem cell signaling pathway: a roadmap to crop yield optimization. Plants 7:87

doi: 10.3390/plants7040087