[1] |
Styles BT. 1988. "Book-review" Manual of cultivated broad-leaved Trees & Shrubs. Vol. III. The Commonwealth Forestry Review 67:82 |
[2] |
Fan S, Liang T, Yu H, Bi Q, Li G, et al. 2016. Kernel characteristics, oil contents, fatty acid compositions and biodiesel properties in developing Siberian apricot (Prunus sibirica L.) seeds. Industrial Crops and Products 89:195−99 doi: 10.1016/j.indcrop.2016.05.012 |
[3] |
Yin M, Wuyun T, Jiang Z, Zeng J. 2020. Amino acid profiles and protein quality of Siberian apricot (Prunus sibirica L.) kernels from Inner Mongolia. Journal of Forestry Research 31:1391−97 doi: 10.1007/s11676-019-00882-4 |
[4] |
Rampáčková E, Göttingerová M, Gála P, Kiss T, Ercişli S, et al. 2021. Evaluation of protein and antioxidant content in apricot kernels as a sustainable additional source of nutrition. Sustainability 13:4742 doi: 10.3390/su13094742 |
[5] |
Yıldırım F, Aşkın M. 2010. Variability of amygdalin content in seeds of sweet andbitter apricot cultivars in Turkey. African Journal of Biotechnology 9:6522−24 |
[6] |
Guo M, Kong Q, Wang W, Yu H. 2023. Biotransformation of amygdalin by lactic acid bacteria fermentation. Process Biochemistry 132:221−27 doi: 10.1016/j.procbio.2023.07.022 |
[7] |
Ramalingam S, Bahuguna A, Al-Ansari MM, Shanmugam G, Al-Humaid L, et al. 2022. Whole-genome analysis guided molecular mechanism of cyanogenic glucoside degradation by yeast isolated from Prunus mume fruit syrup. Chemosphere 307:136061 doi: 10.1016/j.chemosphere.2022.136061 |
[8] |
Zhang G, Liu M, Ma Z, Wang M, Sun L, et al. 2023. Analysis of bitter almonds and processed products based on HPLC-fingerprints and chemometry. Chemistry & Biodiversity 20:e202200989 doi: 10.1002/cbdv.202200989 |
[9] |
Makovi CM, Parker CH, Zhang K. 2023. Determination of amygdalin in apricot kernels and almonds using LC-MS/MS. Journal of AOAC International 106:457−63 doi: 10.1093/jaoacint/qsac154 |
[10] |
Bolarinwa IF, Orfila C, Morgan MRA. 2014. Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chemistry 152:133−39 doi: 10.1016/j.foodchem.2013.11.002 |
[11] |
Figurová D, Tokárová K, Greifová H, Knížatová N, Kolesárová A, et al. 2021. Inflammation, it's regulation and antiphlogistic effect of the cyanogenic glycoside amygdalin. Molecules 26:5972 doi: 10.3390/molecules26195972 |
[12] |
Cortés V, Talens P, Barat MJ, Lerma-García JM. 2018. Potential of NIR spectroscopy to predict amygdalin content established by HPLC in intact almonds and classification based on almond bitterness. Food Control 91:68−75 doi: 10.1016/j.foodcont.2018.03.040 |
[13] |
Ellithy MM, Tarek HE, Shalash HN. 2023. Nutraceutical with a promising oral anticancer effect: in vitro study on apricot oil extract. Bulletin of the National Research Centre 47:1 doi: 10.1186/s42269-022-00976-w |
[14] |
Arshi A, Hosseini SM, Hosseini FSK, Amiri ZY, Hosseini FS, et al. 2019. The anti-cancer effect of amygdalin on human cancer cell lines. Molecular Biology Reports 46:2059−66 doi: 10.1007/s11033-019-04656-3 |
[15] |
Zhang N, Zhang Q, Yao J, Zhang X. 2019. Changes of amygdalin and volatile components of apricot kernels during the ultrasonically-accelerated debitterizing. Ultrasonics Sonochemistry 58:104614 doi: 10.1016/j.ultsonch.2019.104614 |
[16] |
Del Cueto J, Møller BL, Dicenta F, Sánchez-Pérez R. 2018. β-Glucosidase activity in almond seeds. Plant Physiology and Biochemistry 126:163−72 doi: 10.1016/j.plaphy.2017.12.028 |
[17] |
Sánchez-Pérez R, Jørgensen K, Olsen CE, Dicenta F, Møller BL. 2008. Bitterness in almonds. Plant Physiology 146:1040−52 doi: 10.1104/pp.107.112979 |
[18] |
Mirzaei H, Rezaei K. 2019. Amygdalin contents of oil and meal from wild almond: effect of different heat pretreatment and extraction methods. Journal of the American Oil Chemists' Society 96:1163−71 doi: 10.1002/aocs.12257 |
[19] |
Zhang N, Zhang Q, Wei C, Fan X. 2019. Aqueous two-phase system for the extraction of amygdalin from the debitterized water of apricot kernels. CyTA - Journal of Food 17:527−35 doi: 10.1080/19476337.2019.1609586 |
[20] |
Pang Y, Liu H, Wang L. 2019. Determination of amygdalin in nectarine nucleolus by capillary electrophoresis. IOP Conference Series: Earth and Environmental Science 218:012160 doi: 10.1088/1755-1315/218/1/012160 |
[21] |
Jaszczak-Wilke E, Polkowska Ż, Koprowski M, Owsianik K, Mitchell AE, et al. 2021. Amygdalin: toxicity, anticancer activity and analytical procedures for its determination in plant seeds. Molecules 26:2253 doi: 10.3390/molecules26082253 |
[22] |
Attia AA, Salama AF, Eldiasty JG, Mosallam SAER, Ali El-Naggar S, et al. 2022. Amygdalin potentiates the anti-cancer effect of Sorafenib on Ehrlich ascites carcinoma and ameliorates the associated liver damage. Scientific Reports 12:6494 doi: 10.1038/s41598-022-10517-0 |
[23] |
Zhang D, Ye J, Song Y, Wei Y, Jiang S, et al. 2023. Isomerization and stabilization of amygdalin from peach kernels. Molecules 28:4550 doi: 10.3390/molecules28114550 |
[24] |
Zhu L, Guo M, Xue Y, Pan H, Wang J, et al. 2017. Inspection of grain and oils—Determination of amygdalin content by high-performance liquid chromatography. National Food and Strategic Reserves Administration. 7 pp. www.huoshuiyuan.org/uploadfile/2017/0926/20170926020715511.pdf |
[25] |
Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Erratum: near-optimal probabilistic RNA-seq quantification. Nature Biotechnology 34:888 doi: 10.1038/nbt0816-888d |
[26] |
Ernst J, Bar-Joseph Z. 2006. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 7:191 doi: 10.1186/1471-2105-7-191 |
[27] |
Livak JK, Schmittgen DT. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8 doi: 10.1006/meth.2001.1262 |
[28] |
Gómez E, Burgos L, Soriano C, Marín J. 1998. Amygdalin content in the seeds of several apricot cultivars. Journal of the Science of Food and Agriculture 77:184−86 doi: 10.1002/(SICI)1097-0010(199806)77:2<184::AID-JSFA22>3.0.CO;2-H |
[29] |
Deng P, Cui B, Zhu H, Buangurn P, Zhang D, et al. 2021. Accumulation Pattern of amygdalin and prunasin and its correlation with fruit and kernel agronomic characteristics during apricot (Prunus armeniaca L.) kernel development. Foods 10:397 doi: 10.3390/foods10020397 |
[30] |
Wu Y, Xu M, Dong S, Liu M. 2019. Analysis of nutritional composition of bitter almond from different growing areas. Science and Technology of Food Industry 40:300−5 doi: 10.13386/j.issn1002-0306.2019.23.049 |
[31] |
Gleadow RM, Møller BL. 2014. Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annual Review of Plant Biology 65:155−85 doi: 10.1146/annurev-arplant-050213-040027 |
[32] |
Bak S, Kahn RA, Nielsen HL, Moller BL, Halkier BA. 1998. Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Molecular Biology 36:393−405 doi: 10.1023/A:1005915507497 |
[33] |
Sørensen M, Neilson EHJ, Møller BL. 2018. Oximes: unrecognized chameleons in general and specialized plant metabolism. Molecular Plant 11:95−117 doi: 10.1016/j.molp.2017.12.014 |
[34] |
Thodberg S, Del Cueto J, Mazzeo R, Pavan S, Lotti C, et al. 2018. Elucidation of the amygdalin pathway reveals the metabolic basis of bitter and sweet almonds (Prunus dulcis). Plant Physiology 178:1096−111 doi: 10.1104/pp.18.00922 |
[35] |
Yamaguchi T, Yamamoto K, Asano Y. 2014. Identification and characterization of CYP79D16 and CYP71AN24 catalyzing the first and second stepsin l-phenylalanine-derived cyanogenic glycoside biosynthesisin the Japanese apricot, Prunus mume Sieb. et Zucc. Plant Molecular Biology 86:215−23 doi: 10.1007/s11103-014-0225-6 |
[36] |
Franks TK, Yadollahi A, Wirthensohn MG, Guerin JR, Kaiser BN, et al. 2008. A seed coat cyanohydrin glucosyltransferase is associated with bitterness in almond (Prunus dulcis) kernels. Functional Plant Biology 35:236−46 doi: 10.1071/FP07275 |
[37] |
Suelves M, Puigdomènech P. 1998. Molecular cloning of the cDNA coding for the (R)-(+)-mandelonitrile lyase of Prunus amygdalus: temporal and spatial expression patterns in flowers and mature seeds. Planta 206:388−93 doi: 10.1007/s004250050414 |
[38] |
Sánchez-Pérez R, Belmonte FS, Borch J, Dicenta F, Møller BL, et al. 2012. Prunasin hydrolases during fruit development in sweet and bitter almonds. Plant Physiology 158:1916−32 doi: 10.1104/pp.111.192021 |
[39] |
Pičmanová M, Neilson EH, Motawia MS, Olsen CE, Agerbirk N, et al. 2015. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Biochemical Journal 469:375−89 doi: 10.1042/BJ20150390 |
[40] |
Frehner M, Scalet M, Conn EE. 1990. Pattern of the cyanide-potential in developing fruits: implications for plants accumulating cyanogenic monoglucosides (Phaseolus lunatus) or cyanogenic diglucosides in their seeds (Linum usitatissimum, Prunus amygdalus). Plant Physiology 94:28−34 doi: 10.1104/pp.94.1.28 |
[41] |
Song L, Li W, Chen X. 2022. Transcription factor is not just a transcription factor. Trends in Plant Science 27:1087−89 doi: 10.1016/j.tplants.2022.08.001 |
[42] |
Guo L, Xie F, Huang X, Luo Z. 2023. A chromosome-level genome of 'Xiaobaixing' (Prunus armeniaca L.) provides clues to its domestication and identification of key bHLH genes in amygdalin biosynthesis. Plants 12:2756 doi: 10.3390/plants12152756 |
[43] |
Sánchez-Pérez R, Pavan S, Mazzeo R, Moldovan C, Aiese Cigliano R, et al. 2019. Mutation of a bHLH transcription factor allowed almond domestication. Science 364:1095−98 doi: 10.1126/science.aav8197 |