[1] |
Hewitt GM. 2004. The structure of biodiversity – insights from molecular phylogeography. Frontiers in Zoology 1:4 doi: 10.1186/1742-9994-1-4 |
[2] |
Hewitt GM. 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society B 359:183−95 doi: 10.1098/rstb.2003.1388 |
[3] |
Qiu YX, Fu CX, Comes HP. 2011. Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora. Molecular Phylogenetics and Evolution 59:225−44 doi: 10.1016/j.ympev.2011.01.012 |
[4] |
Liepelt S, Bialozyt R, Ziegenhagen B. 2002. Wind-dispersed pollen mediates postglacial gene flow among refugia. Proceedings of the National Academy of Sciences of the United States of America 99:14590−94 doi: 10.1073/pnas.212285399 |
[5] |
Bai WN, Wang WT, Zhang DY. 2014. Contrasts between the phylogeographic patterns of chloroplast and nuclear DNA highlight a role for pollen-mediated gene flow in preventing population divergence in an East Asian temperate tree. Molecular Phylogenetics and Evolution 81:37−48 doi: 10.1016/j.ympev.2014.08.024 |
[6] |
Li X, Ruhsam M, Wang Y, Zhang HY, Fan XY, et al. 2023. Wind-dispersed seeds blur phylogeographic breaks: the complex evolutionary history of Populus lasiocarpa around the Sichuan Basin. Plant Diversity 45:156−68 doi: 10.1016/j.pld.2022.10.003 |
[7] |
Usinowicz J, Chang-Yang CH, Chen YY, Clark JS, Fletcher C, et al. 2017. Temporal coexistence mechanisms contribute to the latitudinal gradient in forest diversity. Nature 550:105−08 doi: 10.1038/nature24038 |
[8] |
Wu Z, Wu S. 1998. A proposal for a new floristic Kingdom (realm)-the E. Asiatic kingdom, its delineation and characteristic. In Floristic Characteristic and Diversity of East Asian Plants, eds. Zhang A, Wu S. China: China Higher Education Press. pp. 3–42. |
[9] |
Manchester SR, Chen ZD, Lu AM, Uemura K. 2009. Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere. Journal of Systematics and Evolution 47:1−42 doi: 10.1111/j.1759-6831.2009.00001.x |
[10] |
Tiffney BH. 1985. Perspectives on the origin of the floristic similarity between Eastern Asia and Eastern North America. Journal of the Arnold Arboretum 66:73−94 doi: 10.5962/bhl.part.13179 |
[11] |
Liu KB. 1988. Quaternary history of the temperate forests of China. Quaternary Science Reviews 7:1−20 doi: 10.1016/0277-3791(88)90089-3 |
[12] |
Wei X, Sork VL, Meng H, Jiang M. 2016. Genetic evidence for central-marginal hypothesis in a Cenozoic relict tree species across its distribution in China. Journal of Biogeography 43:2173−85 doi: 10.1111/jbi.12788 |
[13] |
Ma Q, Du Y, Chen N, Zhang L, Li J, et al. 2015. Phylogeography of Davidia involucrata (Davidiaceae) inferred from cpDNA haplotypes and nSSR data. Systematic Botany 40:796−810 doi: 10.1600/036364415X689267 |
[14] |
Sun Y, Moore MJ, Yue L, Feng T, Chu H, et al. 2014. Chloroplast phylogeography of the East Asian Arcto-Tertiary relict Tetracentron sinense (Trochodendraceae). Journal of Biogeography 41:1721−32 doi: 10.1111/jbi.12323 |
[15] |
Gong W, Chen C, Dobeš C, Fu C, Koch MA. 2008. Phylogeography of a living fossil: Pleistocene glaciations forced Ginkgo biloba L. (Ginkgoaceae) into two refuge areas in China with limited subsequent postglacial expansion. Molecular Phylogenetics and Evolution 48:1094−105 doi: 10.1016/j.ympev.2008.05.003 |
[16] |
Qiu Y, Lu Q, Zhang Y, Cao Y. 2017. Phylogeography of East Asia's Tertiary relict plants: current progress and future prospects. Biodiversity Science 25:136−46 doi: 10.17520/biods.2016292 |
[17] |
Qiu Y, Guan B, Fu C, Comes HP. 2009. Did glacials and/or interglacials promote allopatric incipient speciation in East Asian temperate plants? Phylogeographic and coalescent analyses on refugial isolation and divergence in Dysosma versipellis Molecular Phylogenetics and Evolution 51:281−93 doi: 10.1016/j.ympev.2009.01.016 |
[18] |
Kou Y, Cheng S, Tian S, Li B, Fan D, et al. 2016. The antiquity of Cyclocarya paliurus (Juglandaceae) provides new insights into the evolution of relict plants in subtropical China since the late Early Miocene. Journal of Biogeography 43:351−60 doi: 10.1111/jbi.12635 |
[19] |
Wang L, Schneider H, Zhang X, Xiang Q. 2012. The rise of the Himalaya enforced the diversification of SE Asian ferns by altering the monsoon regimes. BMC Plant Biology 12:210 doi: 10.1186/1471-2229-12-210 |
[20] |
An Z, Kutzbach JE, Prell WL, Porter SC. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 411:62−66 doi: 10.1038/35075035 |
[21] |
Guo ZT, Sun B, Zhang ZS, Peng SZ, Xiao GQ, et al. 2008. A major reorganization of Asian climate by the early Miocene. Climate of the Past 4:153−74 doi: 10.5194/cp-4-153-2008 |
[22] |
Holbourn AE, Kuhnt W, Clemens SC, Kochhann KGD, Jöhnck J, et al. 2018. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nature Communications 9:1584 doi: 10.1038/s41467-018-03950-1 |
[23] |
Clift P, Lee JI, Clark MK, Blusztajn J. 2002. Erosional response of South China to arc rifting and monsoonal strengthening; a record from the South China Sea. Marine Geology 184:207−26 doi: 10.1016/S0025-3227(01)00301-2 |
[24] |
Sun X, Wang P. 2005. How old is the Asian monsoon system?—Palaeobotanical records from China Palaeogeography, Palaeoclimatology, Palaeoecology 222:181−222 doi: 10.1016/j.palaeo.2005.03.005 |
[25] |
Harris N. 2006. The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeography, Palaeoclimatology, Palaeoecology 241:4−15 doi: 10.1016/j.palaeo.2006.07.009 |
[26] |
Zhou Z, Huang J, Ding W. 2017. The impact of major geological events on Chinese flora. Biodiversity Science 25:123−35 doi: 10.17520/biods.2016120 |
[27] |
Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686−93 doi: 10.1126/science.1059412 |
[28] |
Wan S, Li A, Clift PD, Stuut JBW. 2007. Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology 254:561−82 doi: 10.1016/j.palaeo.2007.07.009 |
[29] |
Royden LH, Burchfiel BC, van der Hilst RD. 2008. The geological evolution of the Tibetan Plateau. Science 321:1054−58 doi: 10.1126/science.1155371 |
[30] |
Zhou S, Wang X, Wang J, Xu L. 2006. A preliminary study on timing of the oldest Pleistocene glaciation in Qinghai–Tibetan Plateau. Quaternary International 154−155:44−51 doi: 10.1016/j.quaint.2006.02.002 |
[31] |
Zhang YH, Wang IJ, Comes HP, Peng H, Qiu YX. 2016. Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae). Scientific Reports 6:24041 doi: 10.1038/srep24041 |
[32] |
Wang WM. 1994. Paleofloristic and paleoclimatic implications of Neogene palynofloras in China. Review of Palaeobotany and Palynology 82:239−50 doi: 10.1016/0034-6667(94)90078-7 |
[33] |
Fan DM, Yue JP, Nie ZL, Li ZM, Comes HP, et al. 2013. Phylogeography of Sophora davidii (Leguminosae) across the 'Tanaka-Kaiyong Line', an important phytogeographic boundary in Southwest China. Molecular Ecology 22:4270−88 doi: 10.1111/mec.12388 |
[34] |
Ding Y. 1992. Summer monsoon rainfalls in China. Journal of the Meteorological Society of Japan 70:373−96 doi: 10.2151/jmsj1965.70.1B_373 |
[35] |
Yu G, Chen Z, Piao S, Peng C, Ciais P, et al. 2014. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences of the United States of America 111:4910−15 doi: 10.1073/pnas.1317065111 |
[36] |
Silva AC, Souza AF. 2018. Aridity drives plant biogeographical sub regions in the Caatinga, the largest tropical dry forest and woodland block in South America. PLoS One 13:e0196130 doi: 10.1371/journal.pone.0196130 |
[37] |
Sun J, Ye J, Wu W, Ni X, Bi S, et al. 2010. Late Oligocene–Miocene mid-latitude aridification and wind patterns in the Asian interior. Geology 38:515−18 doi: 10.1130/G30776.1 |
[38] |
Liu L, Eronen JT, Fortelius M. 2009. Significant mid-latitude aridity in the middle Miocene of East Asia. Palaeogeography, Palaeoclimatology, Palaeoecology 279:201−06 doi: 10.1016/j.palaeo.2009.05.014 |
[39] |
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853−58 doi: 10.1038/35002501 |
[40] |
Luo D, Xu B, Li ZM, Sun H. 2021. Biogeographical divides delineated by the three-step landforms of China and the East China Sea: insights from the phylogeography of Kerria japonica. Journal of Biogeography 48:372−85 doi: 10.1111/jbi.14002 |
[41] |
Ye JW, Bai WN, Bao L, Wang TM, Wang HF, et al. 2017. Sharp genetic discontinuity in the aridity-sensitive Lindera obtusiloba (Lauraceae): solid evidence supporting the Tertiary floral subdivision in East Asia. Journal of Biogeography 44:2082−95 doi: 10.1111/jbi.13020 |
[42] |
Cao YN, Comes HP, Sakaguchi S, Chen LY, Qiu YX. 2016. Evolution of East Asia's Arcto-Tertiary relict Euptelea (Eupteleaceae) shaped by Late Neogene vicariance and Quaternary climate change. BMC Evolutionary Biology 16:66 doi: 10.1186/s12862-016-0636-x |
[43] |
Li XW, Li J. 1997. The Tanaka-Kaiyong Line-an important floristic line for the study of the flora of East Asia. Annals of the Missouri Botanical Garden 84:888−92 doi: 10.2307/2992033 |
[44] |
Qi XS, Chen C, Comes HP, Sakaguchi S, Liu YH, et al. 2012. Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the East Asian Tertiary relict Cercidiphyllum (Cercidiphyllaceae). New Phytologist 196:617−30 doi: 10.1111/j.1469-8137.2012.04242.x |
[45] |
Song YG, Li Y, Meng HH, Fragnière Y, Ge BJ, et al. 2020. Phylogeny, taxonomy, and biogeography of Pterocarya (Juglandaceae). Plants 9:1524 doi: 10.3390/plants9111524 |
[46] |
Zhang TC, Comes HP, Sun H. 2011. Chloroplast phylogeography of Terminalia franchetii (Combretaceae) from the eastern Sino-Himalayan region and its correlation with historical river capture events. Molecular Phylogenetics and Evolution 60:1−12 doi: 10.1016/j.ympev.2011.04.009 |
[47] |
Chen SC, Zhang L, Zeng J, Shi F, Yang H, et al. 2012. Geographic variation of chloroplast DNA in Platycarya strobilacea (Juglandaceae). Journal of Systematics and Evolution 50:374−85 doi: 10.1111/j.1759-6831.2012.00210.x |
[48] |
Dumolin S, Demesure B, Petit RJ. 1995. Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theoretical and Applied Genetics 91:1253−56 doi: 10.1007/BF00220937 |
[49] |
Bai WN, Zeng YF, Zhang DY. 2007. Mating patterns and pollen dispersal in a heterodichogamous tree, Juglans mandshurica (Juglandaceae). New Phytologist 176:699−707 doi: 10.1111/j.1469-8137.2007.02202.x |
[50] |
Lei M, Wang Q, Wu ZJ, López-Pujol J, Li DZ, et al. 2012. Molecular phylogeography of Fagus engleriana (Fagaceae) in subtropical China: limited admixture among multiple refugia. Tree Genetics & Genomes 8:1203−12 doi: 10.1007/s11295-012-0507-6 |
[51] |
Kozlowski G, Sébastien B, Song YG. 2018. Wingnuts (Pterocarya) & walnut family. Relict trees: linking the past, present and future. Switzerland: Natural History Museum Fribourg. pp. 36–39. |
[52] |
Kozlowski G, Song Y, Bétrisey S. 2019. Pterocarya hupehensis. The IUCN Red List of Threatened Species 2019: e. T66816108A152835141. http://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T66816108A152835141.en. Accessed on 27 February 2024. |
[53] |
Fang J, Wang Z, Tang Z. 2011. Atlas of woody plants in China. Heidelberg: Springer Berlin. 2000 pp. https://doi.org/10.1007/978-3-642-15017-3 |
[54] |
Wu ZY, Raven PH, Hong DY. 2003. Flora of China. Volume 5: Ulmaceae through Basellaceae. Beijing: Science Press, St. Louis: Missouri Botanical Garden Press. http://flora.huh.harvard.edu/china/mss/volume05/index.htm |
[55] |
Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11−15 |
[56] |
Shaw J, Lickey EB, Schilling EE, Small RL. 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany 94:275−88 doi: 10.3732/ajb.94.3.275 |
[57] |
Qian ZH, Li Y, Li MW, He YX, Li JX, et al. 2019. Molecular phylogeography analysis reveals population dynamics and genetic divergence of a widespread tree Pterocarya stenoptera in China. Frontiers in Genetics 10:1089 doi: 10.3389/fgene.2019.01089 |
[58] |
Demesure B, Sodzi N, Petit RJ. 1995. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Molecular Ecology 4:129−34 doi: 10.1111/j.1365-294X.1995.tb00201.x |
[59] |
Sugahara K, Kaneko Y, Sakaguchi S, Ito S, Yamanaka K, et al. 2017. Quaternary range-shift history of Japanese wingnut (Pterocarya rhoifolia) in the Japanese Archipelago evidenced from chloroplast DNA and ecological niche modeling. Journal of Forest Research 22:282−93 doi: 10.1080/13416979.2017.1351837 |
[60] |
Borkowski DS, McCleary T, McAllister M, Romero-Severson J. 2014. Primers for 52 polymorphic regions in the Quercus rubra chloroplast, 47 of which amplify across 11 tracheophyte clades. Tree Genetics & Genomes 10:885−93 doi: 10.1007/s11295-014-0729-x |
[61] |
Xu J, Deng M, Jiang XL, Westwood M, Song YG, et al. 2015. Phylogeography of Quercus glauca (Fagaceae), a dominant tree of East Asian subtropical evergreen forests, based on three chloroplast DNA interspace sequences. Tree Genetics & Genomes 11:805 doi: 10.1007/s11295-014-0805-2 |
[62] |
Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution 38:3022−27 doi: 10.1093/molbev/msab120 |
[63] |
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, et al. 2017. DnaSP 6: DNA Sequence Polymorphism analysis of large data sets. Molecular Biology and Evolution 34:3299−302 doi: 10.1093/molbev/msx248 |
[64] |
Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10:564−67 doi: 10.1111/j.1755-0998.2010.02847.x |
[65] |
Pons O, Petit RJ. 1996. Measwring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237−45 doi: 10.1093/genetics/144.3.1237 |
[66] |
Bandelt HJ, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16:37−48 doi: 10.1093/oxfordjournals.molbev.a026036 |
[67] |
Manni F, Guérard E, Heyer E. 2004. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier's algorithm. Human Biology 76:173−90 doi: 10.1353/hub.2004.0034 |
[68] |
Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, et al. 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15:e1006650 doi: 10.1371/journal.pcbi.1006650 |
[69] |
Hu Y, Woeste KE, Zhao P. 2016. Completion of the chloroplast genomes of five Chinese Juglans and their contribution to chloroplast phylogeny. Frontiers in Plant Science 7:1955 doi: 10.3389/fpls.2016.01955 |
[70] |
Posada D, Crandall KA. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817−18 doi: 10.1093/bioinformatics/14.9.817 |
[71] |
Zhang Q, Ree RH, Salamin N, Xing Y, Silvestro D. 2022. Fossil-informed models reveal a boreotropical origin and divergent evolutionary trajectories in the walnut family (Juglandaceae). Systematic Biology 71:242−58 doi: 10.1093/sysbio/syab030 |
[72] |
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in bayesian phylogenetics using Tracer 1.7. Systematic Biology 67:901−04 doi: 10.1093/sysbio/syy032 |
[73] |
Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585−95 doi: 10.1093/genetics/123.3.585 |
[74] |
Fu YX. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915−25 doi: 10.1093/genetics/147.2.915 |
[75] |
Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. 2013. Stacks: an analysis tool set for population genomics. Molecular Ecology 22:3124−40 doi: 10.1111/mec.12354 |
[76] |
Zhang WP, Cao L, Lin XR, Ding YM, Liang Y, et al. 2021. Dead-end hybridization in walnut trees revealed by large-scale genomic sequence data. Molecular Biology and Evolution 39:msab308 doi: 10.1093/molbev/msab308 |
[77] |
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754−60 doi: 10.1093/bioinformatics/btp324 |
[78] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078−79 doi: 10.1093/bioinformatics/btp352 |
[79] |
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, et al. 2011. The variant call format and VCFtools. Bioinformatics 27:2156−58 doi: 10.1093/bioinformatics/btr330 |
[80] |
Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research 19:1655−64 doi: 10.1101/gr.094052.109 |
[81] |
R Core Team. 2021. R: A language and environment for statistical computing. https://www.R-project.org/ |
[82] |
Jombart T, Devillard S, Balloux F. 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics 11:94 doi: 10.1186/1471-2156-11-94 |
[83] |
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32:268−74 doi: 10.1093/molbev/msu300 |
[84] |
Pickrell J, Pritchard J. 2012. Inference of population splits and mixtures from genome-wide allele frequency data. Nature Precedings doi: 10.1038/npre.2012.6956.1 |
[85] |
Liu X, Fu YX. 2020. Stairway Plot 2: demographic history inference with folded SNP frequency spectra. Genome Biology 21:280 doi: 10.1186/s13059-020-02196-9 |
[86] |
Korneliussen TS, Albrechtsen A, Nielsen R. 2014. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15:356 doi: 10.1186/s12859-014-0356-4 |
[87] |
Bai WN, Yan PC, Zhang BW, Woeste KE, Lin K, et al. 2018. Demographically idiosyncratic responses to climate change and rapid Pleistocene diversification of the walnut genus Juglans (Juglandaceae) revealed by whole-genome sequences. New Phytologist 217:1726−36 doi: 10.1111/nph.14917 |
[88] |
Posada D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25:1253−56 doi: 10.1093/molbev/msn083 |
[89] |
Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231−59 doi: 10.1016/j.ecolmodel.2005.03.026 |
[90] |
Hijmans RJ, Phillips S, Leathwick J, Elith J, Hijmans MRJ. 2017. Package 'dismo'. Circles 9:1−68 |
[91] |
Hijmans RJ, Van Etten J, Cheng J, Mattiuzzi M, Sumner M, et al. 2015. Package 'raster'. R package 734:473 |
[92] |
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965−78 doi: 10.1002/joc.1276 |
[93] |
Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, et al. 2007. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features. Climate of the Past 3:261−77 doi: 10.5194/cp-3-261-2007 |
[94] |
Otto-Bliesner BL, Marshall SJ, Overpeck JT, Miller GH, Hu A, et al. 2006. Simulating arctic climate warmth and icefield retreat in the last interglaciation. Science 311:1751−53 doi: 10.1126/science.1120808 |
[95] |
Naimi B, Hamm NA, Groen TA, Skidmore AK, Toxopeus AG. 2014. Where is positional uncertainty a problem for species distribution modelling? Ecography 37:191−203 doi: 10.1111/j.1600-0587.2013.00205.x |
[96] |
Song YG, Walas Ł, Pietras M, Sâm HV, Yousefzadeh H, et al. 2021. Past, present and future suitable areas for the relict tree Pterocarya fraxinifolia (Juglandaceae): integrating fossil records, niche modeling, and phylogeography for conservation. European Journal of Forest Research 140:1323−39 doi: 10.1007/s10342-021-01397-6 |
[97] |
Jump AS, Mátyás C, Peñuelas J. 2009. The altitude-for-latitude disparity in the range retractions of woody species. Trends in Ecology & Evolution 24:694−701 doi: 10.1016/j.tree.2009.06.007 |
[98] |
Reinmann AB, Hutyra LR. 2016. Edge effects enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests. Proceedings of the National Academy of Sciences of the United States of America 114:107−12 doi: 10.1073/pnas.1612369114 |
[99] |
Czúcz B, Gálhidy L, Mátyás C. 2011. Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Annals of Forest Science 68:99−108 doi: 10.1007/s13595-011-0011-4 |
[100] |
Zhou TH, Li S, Qian ZQ, Su HL, Huang ZH, et al. 2010. Strong phylogeographic pattern of cpDNA variation reveals multiple glacial refugia for Saruma henryi Oliv. (Aristolochiaceae), an endangered herb endemic to China. Molecular Phylogenetics and Evolution 57:176−88 doi: 10.1016/j.ympev.2010.07.001 |
[101] |
Meng HH, Zhang CY, Song YG, Yu XQ, Cao GL, et al. 2022. Opening a door to the spatiotemporal history of plants from the tropical Indochina Peninsula to subtropical China. Molecular Phylogenetics and Evolution 171:107458 doi: 10.1016/j.ympev.2022.107458 |
[102] |
Chen D, Zhang X, Kang H, Sun X, Yin S, et al. 2012. Phylogeography of Quercus variabilis based on chloroplast DNA sequence in East Asia: multiple glacial refugia and mainland-migrated island populations. PLoS One 7:e47268 doi: 10.1371/journal.pone.0047268 |
[103] |
Du FK, Petit RJ, Liu JQ. 2009. More introgression with less gene flow: chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other conifers. Molecular Ecology 18:1396−407 doi: 10.1111/j.1365-294X.2009.04107.x |
[104] |
Buschbom J, Yanbaev Y, Degen B. 2011. Efficient long-distance gene flow into an isolated relict oak stand. Journal of Heredity 102:464−72 doi: 10.1093/jhered/esr023 |
[105] |
Maharramova E, Huseynova I, Kolbaia S, Gruenstaeudl M, Borsch T, et al. 2018. Phylogeography and population genetics of the riparian relict tree Pterocarya fraxinifolia (Juglandaceae) in the South Caucasus. Systematics and Biodiversity 16:14−27 doi: 10.1080/14772000.2017.1333540 |
[106] |
Maharramova E. 2016. Genetic diversity and population structure of the relict forest trees Zelkova carpinifolia (Ulmaceae) and Pterocarya fraxinifolia (Juglandaceae) in the South Caucasus. Dissertation. Berlin: Freie Universität Berlin. http://dx.doi.org/10.17169/refubium-9267 |
[107] |
Hopkins R. 2013. Reinforcement in plants. New Phytologist 197:1095−103 doi: 10.1111/nph.12119 |
[108] |
Balao F, Lorenzo MT, Sánchez-Robles JM, Paun O, García-Castaño JL, et al. 2020. Early diversification and permeable species boundaries in the Mediterranean firs. Annals of Botany 125:495−507 doi: 10.1093/aob/mcz186 |
[109] |
de Lafontaine G, Ducousso A, Lefèvre S, Magnanou E, Petit RJ. 2013. Stronger spatial genetic structure in recolonized areas than in refugia in the European beech. Molecular Ecology 22:4397−412 doi: 10.1111/mec.12403 |
[110] |
Lind JF, Gailing O. 2013. Genetic structure of Quercus rubra L. and Quercus ellipsoidalis E. J. Hill populations at gene-based EST-SSR and nuclear SSR markers. Tree Genetics & Genomes 9:707−22 doi: 10.1007/s11295-012-0586-4 |
[111] |
Wang TR, Meng HH, Wang N, Zheng SS, Jiang Y, et al. 2023. Adaptive divergence and genetic vulnerability of relict species under climate change: a case study of Pterocarya macroptera. Annals of Botany 132:241−54 doi: 10.1093/aob/mcad083 |
[112] |
Gates K, Sandoval-Castillo J, Brauer CJ, Unmack PJ, Laporte M, et al. 2023. Environmental selection, rather than neutral processes, best explain regional patterns of diversity in a tropical rainforest fish. Heredity 130:368−80 doi: 10.1038/s41437-023-00612-x |
[113] |
Cortázar-Chinarro M, Lattenkam EZ, Meyer-Luch Y, Luquet E, Laurila A, et al. 2017. Drift, selection, or migration? Processes affecting genetic differentiation and variation along a latitudinal gradient in an amphibian BMC Evolutionary Biology 17:189 doi: 10.1186/s12862-017-1022-z |
[114] |
Winkler MG, Wang PK. 1993. The late-quaternary vegetation and climate of China. In Global Climates since the Last Glacial Maximum, eds. Wright HE, Kutzbach JE, WebbIII T, Ruddiman WF, Street-Perrott FA, et al. Minneapolis, MN: University of Minnesota Press. pp. 221–64. |
[115] |
Willis KJ, Niklas KJ. 2004. The role of Quaternary environmental change in plant macroevolution: the exception or the rule? Philosophical Transactions of the Royal Society B 359:159−72 doi: 10.1098/rstb.2003.1387 |
[116] |
Sun Y, Ding Y. 2010. A projection of future changes in summer precipitation and monsoon in East Asia. Science China Earth Sciences 53:284−300 doi: 10.1007/s11430-009-0123-y |
[117] |
Wang B, Liu J, Kim HJ, Webster PJ, Yim SY. 2012. Recent change of the global monsoon precipitation (1979–2008). Climate Dynamics 39:1123−35 doi: 10.1007/s00382-011-1266-z |
[118] |
Li Y, Ding Y, Li W. 2017. Interdecadal variability of the Afro-Asian summer monsoon system. Advances in Atmospheric Sciences 34:833−46 doi: 10.1007/s00376-017-6247-7 |
[119] |
Schoonderwoerd KM, Friedman WE. 2021. Naked resting bud morphologies and their taxonomic and geographic distributions in temperate, woody floras. New Phytologist 232:523−36 doi: 10.1111/nph.17506 |
[120] |
Qiao L, Wen G, Qi Y, Lu B, Hu J, et al. 2018. Evolutionary melting pots and reproductive isolation: a ring-shaped diversification of an odorous frog (Odorrana margaratea) around the Sichuan Basin. Molecular Ecology 27:4888−900 doi: 10.1111/mec.14899 |
[121] |
Wang Y, Feijó A, Cheng J, Xia L, Wen Z, et al. 2021. Ring distribution patterns—diversification or speciation? Comparative phylogeography of two small mammals in the mountains surrounding the Sichuan Basin Molecular Ecology 30:2641−58 doi: 10.1111/mec.15913 |
[122] |
Xie XF, Yan HF, Wang FY, Ge XJ, Hu CM, et al. 2012. Chloroplast DNA phylogeography of Primula ovalifolia in central and adjacent southwestern China: past gradual expansion and geographical isolation. Journal of Systematics and Evolution 50:284−94 doi: 10.1111/j.1759-6831.2012.00204.x |
[123] |
Liu Y, Chang X. 2003. Modeling for the burial and subsidence history of the Sichuan Basin. Chinese Journal of Geophysics 46:283−90 doi: 10.1002/cjg2.343 |
[124] |
Zheng H. 2015. Birth of the Yangtze River: age and tectonic-geomorphic implications. National Science Review 2:438−53 doi: 10.1093/nsr/nwv063 |
[125] |
Li J, Xie S, Kuang M. 2001. Geomorphic evolution of the Yangtze Gorges and the time of their formation. Geomorphology 41:125−35 doi: 10.1016/S0169-555X(01)00110-6 |
[126] |
Gillespie A, Molnar P. 1995. Asynchronous maximum advances of mountain and continental glaciers. Reviews of Geophysics 33:311−64 doi: 10.1029/95RG00995 |
[127] |
Nei M, Maruyama T, Chakraborty R. 1975. The bottleneck effect and genetic variability in populations. Evolution 29:1−10 doi: 10.2307/2407137 |
[128] |
Borthakur D, Busov V, Cao XH, Du Q, Gailing O, et al. 2022. Current status and trends in forest genomics. Forestry Research 2:11 doi: 10.48130/FR-2022-0011 |
[129] |
Xu LL, Yu RM, Lin XR, Zhang BW, Li N, et al. 2021. Different rates of pollen and seed gene flow cause branch-length and geographic cytonuclear discordance within Asian butternuts. New Phytologist 232:388−403 doi: 10.1111/nph.17564 |
[130] |
Ellstrand NC, Elam DR. 1993. Population genetic consequences of small population size: implications for plant conservation. Annual Review of Ecology and Systematics 24:217−42 doi: 10.1146/annurev.es.24.110193.001245 |
[131] |
Allendorf FW. 1986. Genetic drift and the loss of alleles versus heterozygosity. Zoo Biology 5:181−90 doi: 10.1002/zoo.1430050212 |